Project Proposal

Video Lecture

Video, Slides

Description

The proposal outlines your project's motivation, design, requirements, ethics, and safety. The project proposal is an expansion on the information provided in the RFA. Use the following format:

  1. Introduction

    • Problem: One to two paragraphs detailing the problem statement. Include any relevant references to justify the existence or importance of the problem.
    • Solution: One to two paragraphs describing the solution. Give a high-level idea of what your solution is, then delve into detail as to how it is implemented. You do not have to commit to a particular implementation at this point, but your description should be explicit and concrete.
    • Visual Aid: A pictorial representation of your project that puts your solution in context. Include other external systems relevant to your project (e.g. if your solution connects to a phone via Bluetooth, draw a dotted line between your device and the phone). Note that this is not a block diagram and should explain how the solution is used, not a breakdown of inner components.

      Sample visual aid for project which remaps GameCube buttons on the fly.

    • High-level requirements list: A list of three quantitative characteristics that this project must exhibit in order to solve the problem. Each high-level requirement must be stated in complete sentences and displayed as a bulleted list. Avoid mentioning "cost" as a high level requirement.
  2. Design
    • Block Diagram: Break your design down into blocks and assign these blocks into subsystems. Label voltages and data connections. Your microcontroller can live in multiple subsystems if you wish, as in the example below.

      Sample block diagram for electric longboard + remote

    • Subsystem Overview: A brief description of the function of each subsystem in the block diagram and explain how it connects with the other subsystems. Every subsystem in the block diagram should have its own paragraph.
    • Subsystem Requirements: For each subsystem in your block diagram, you should include a highly detailed block description. Each description must include a statement indicating how the block contributes to the overall design dictated by the high-level requirements. Any interfaces with other blocks must be defined clearly and quantitatively. Include a list of requirements where if any of these requirements were removed, the subsystem would fail to function. Good example: Power Subsystem must be able to supply at least 500mA to the rest of the system continuously at 5V +/- 0.1V.
    • Tolerance Analysis: Identify an aspect of your design that poses a risk to successful completion of the project. Demonstrate the feasibility of this component through mathematical analysis or simulation.
  3. Ethics and Safety
    Assess the ethical and safety issues relevant to your project. Consider both issues arising during the development of your project and those which could arise from the accidental or intentional misuse of your project. Specific ethical issues should be discussed in the context of the IEEE and/or ACM Code of Ethics. Cite, but do not copy the Codes. Explain how you will avoid ethical breaches. Cite and discuss relevant safety and regulatory standards as they apply to your project. Review state and federal regulations, industry standards, and campus policy. Identify potential safety concerns in your project.

Submission and Deadlines

The Project Proposal document should be uploaded to My Project on PACE in PDF format before the deadline listed on the Calendar.

Musical Hand

Ramsey Foote, Thomas MacDonald, Michelle Zhang

Musical Hand

Featured Project

# Musical Hand

Team Members:

- Ramesey Foote (rgfoote2)

- Michelle Zhang (mz32)

- Thomas MacDonald (tcm5)

# Problem

Musical instruments come in all shapes and sizes; however, transporting instruments often involves bulky and heavy cases. Not only can transporting instruments be a hassle, but the initial purchase and maintenance of an instrument can be very expensive. We would like to solve this problem by creating an instrument that is lightweight, compact, and low maintenance.

# Solution

Our project involves a wearable system on the chest and both hands. The left hand will be used to dictate the pitches of three “strings” using relative angles between the palm and fingers. For example, from a flat horizontal hand a small dip in one finger is associated with a low frequency. A greater dip corresponds to a higher frequency pitch. The right hand will modulate the generated sound by adding effects such as vibrato through lateral motion. Finally, the brains of the project will be the central unit, a wearable, chest-mounted subsystem responsible for the audio synthesis and output.

Our solution would provide an instrument that is lightweight and easy to transport. We will be utilizing accelerometers instead of flex sensors to limit wear and tear, which would solve the issue of expensive maintenance typical of more physical synthesis methods.

# Solution Components

The overall solution has three subsystems; a right hand, left hand, and a central unit.

## Subsystem 1 - Left Hand

The left hand subsystem will use four digital accelerometers total: three on the fingers and one on the back of the hand. These sensors will be used to determine the angle between the back of the hand and each of the three fingers (ring, middle, and index) being used for synthesis. Each angle will correspond to an analog signal for pitch with a low frequency corresponding to a completely straight finger and a high frequency corresponding to a completely bent finger. To filter out AC noise, bypass capacitors and possibly resistors will be used when sending the accelerometer signals to the central unit.

## Subsystem 2 - Right Hand

The right subsystem will use one accelerometer to determine the broad movement of the hand. This information will be used to determine how much of a vibrato there is in the output sound. This system will need the accelerometer, bypass capacitors (.1uF), and possibly some resistors if they are needed for the communication scheme used (SPI or I2C).

## Subsystem 3 - Central Unit

The central subsystem utilizes data from the gloves to determine and generate the correct audio. To do this, two microcontrollers from the STM32F3 series will be used. The left and right hand subunits will be connected to the central unit through cabling. One of the microcontrollers will receive information from the sensors on both gloves and use it to calculate the correct frequencies. The other microcontroller uses these frequencies to generate the actual audio. The use of two separate microcontrollers allows for the logic to take longer, accounting for slower human response time, while meeting needs for quicker audio updates. At the output, there will be a second order multiple feedback filter. This will get rid of any switching noise while also allowing us to set a gain. This will be done using an LM358 Op amp along with the necessary resistors and capacitors to generate the filter and gain. This output will then go to an audio jack that will go to a speaker. In addition, bypass capacitors, pull up resistors, pull down resistors, and the necessary programming circuits will be implemented on this board.

# Criterion For Success

The minimum viable product will consist of two wearable gloves and a central unit that will be connected together via cords. The user will be able to adjust three separate notes that will be played simultaneously using the left hand, and will be able to apply a sound effect using the right hand. The output audio should be able to be heard audibly from a speaker.

Project Videos