Initial post to web board

Video Lectures

Finding a Problem and Generating Solutions m4v
Diving Deeper m4v
Votingm4v
Reverse Brainstormingm4v, notes
Homeworkm4v

Assignment Description

This exercise is intended to facilitate project brainstorming and team formation. Please see the videos linked below for guidance on brainstorming to find problems and engineering solutions to those problems.

In the first lecture, the course staff will assign you into groups of approximately 8 students to work on this assignment. These are not the groups or projects you will be working with on your course project, they are strictly for this assignment!. Each brainstorming group will use the brainstorming methods outlined in the videos above to come up with problem statements and corresponding solutions. This ideation exercise is intended to stimulate the process of finding a suitable senior design project for this semester but not all problem statements or proposed solutions may fit within the scope of ECE 445.

After the first lecture, all students must make a post on the Web Board. This initial post must consist of either a problem statement or a proposed solution and may be posted as a reply to an existing thread.

Requirements and Grading

Grading will be out of 5 total points and awarded based on the existence of substantive post on the Web Board ("Hello world" type posts will not receive credit).

Submission and Deadlines

The initial Web Board post is due by 11:59pm on the date listed on the Course Calendar. All students must either create or respond to a post. Students posting after the deadline will not receive credit.

Amphibious Spherical Explorer

Kaiwen Chen, Junhao Su, Zhong Tan

Amphibious Spherical Explorer

Featured Project

The amphibious spherical explorer (ASE) is a spherical robot for home monitoring, outdoor adventure or hazardous environment surveillance. Due to the unique shape of the robot, ASE can travel across land, dessert, swamp or even water by itself, or be casted by other devices (e.g. slingshot) to the mission area. ASE has a motion-sensing system based on Inertial Measurement Unit (IMU) and rotary magnetic encoder, which allows the internal controller to adjust its speed and attitude properly. The well-designed control system makes the robot free of visible wobbliness when it is taking actions like acceleration, deceleration, turning and rest. ASE is also a platform for research on control system design. The parameters of the internal controller can be assigned by an external control panel in computer based on MATLAB Graphic User Interface (GUI) which communicates with the robot via a WiFi network generated by the robot. The response of the robot can be recorded and sent back to the control panel for further analysis. This project is completely open-sourced. People who are interested in the robot can continue this project for more interesting features, such as adding camera for real-time surveillance, or controller design based on machine learning.

Project Videos