Initial post to web board

Video Lectures

Finding a Problem and Generating Solutions m4v
Diving Deeper m4v
Votingm4v
Reverse Brainstormingm4v, notes
Homeworkm4v

Assignment Description

This exercise is intended to facilitate project brainstorming and team formation. Please see the videos linked below for guidance on brainstorming to find problems and engineering solutions to those problems.

In the first lecture, the course staff will assign you into groups of approximately 8 students to work on this assignment. These are not the groups or projects you will be working with on your course project, they are strictly for this assignment!. Each brainstorming group will use the brainstorming methods outlined in the videos above to come up with problem statements and corresponding solutions. This ideation exercise is intended to stimulate the process of finding a suitable senior design project for this semester but not all problem statements or proposed solutions may fit within the scope of ECE 445.

After the first lecture, all students must make a post on the Web Board. This initial post must consist of either a problem statement or a proposed solution and may be posted as a reply to an existing thread.

Requirements and Grading

Grading will be out of 5 total points and awarded based on the existence of substantive post on the Web Board ("Hello world" type posts will not receive credit).

Submission and Deadlines

The initial Web Board post is due by 11:59pm on the date listed on the Course Calendar. All students must either create or respond to a post. Students posting after the deadline will not receive credit.

Cypress Robot Kit

Todd Nguyen, Byung Joo Park, Alvin Wu

Cypress Robot Kit

Featured Project

Cypress is looking to develop a robotic kit with the purpose of interesting the maker community in the PSOC and its potential. We will be developing a shield that will attach to a PSoC board that will interface to our motors and sensors. To make the shield, we will design our own PCB that will mount on the PSoC directly. The end product will be a remote controlled rover-like robot (through bluetooth) with sensors to achieve line following and obstacle avoidance.

The modules that we will implement:

- Motor Control: H-bridge and PWM control

- Bluetooth Control: Serial communication with PSoC BLE Module, and phone application

- Line Following System: IR sensors

- Obstacle Avoidance System: Ultrasonic sensor

Cypress wishes to use as many off-the-shelf products as possible in order to achieve a “kit-able” design for hobbyists. Building the robot will be a plug-and-play experience so that users can focus on exploring the capabilities of the PSoC.

Our robot will offer three modes which can be toggled through the app: a line following mode, an obstacle-avoiding mode, and a manual-control mode. In the manual-control mode, one will be able to control the motors with the app. In autonomous modes, the robot will be controlled based off of the input from the sensors.