Initial post to web board

Video Lectures

Finding a Problem and Generating Solutions m4v
Diving Deeper m4v
Votingm4v
Reverse Brainstormingm4v, notes
Homeworkm4v

Assignment Description

This exercise is intended to facilitate project brainstorming and team formation. Please see the videos linked below for guidance on brainstorming to find problems and engineering solutions to those problems.

In the first lecture, the course staff will assign you into groups of approximately 8 students to work on this assignment. These are not the groups or projects you will be working with on your course project, they are strictly for this assignment!. Each brainstorming group will use the brainstorming methods outlined in the videos above to come up with problem statements and corresponding solutions. This ideation exercise is intended to stimulate the process of finding a suitable senior design project for this semester but not all problem statements or proposed solutions may fit within the scope of ECE 445.

After the first lecture, all students must make a post on the Web Board. This initial post must consist of either a problem statement or a proposed solution and may be posted as a reply to an existing thread.

Requirements and Grading

Grading will be out of 5 total points and awarded based on the existence of substantive post on the Web Board ("Hello world" type posts will not receive credit).

Submission and Deadlines

The initial Web Board post is due by 11:59pm on the date listed on the Course Calendar. All students must either create or respond to a post. Students posting after the deadline will not receive credit.

Propeller-less Multi-rotor

Ignacio Aguirre Panadero, Bree Peng, Leo Yamamae

Propeller-less Multi-rotor

Featured Project

Our project explored the every-expanding field of drones. We wanted to solve a problem with the dangers of plastic propellers as well as explore new method of propulsion for drones.

Our design uses a centrifugal fan design inspired by Samm Shepard's "This is NOT a Propeller" video where he created a centrifugal fan for a radio controlled plane. We were able to design a fan that has a peak output of 550g per fan that is safe when crashing and when the impeller inside damaged.

The chassis and fans are made of laser-cut polystyrene and is powered using brushless motors typically used for radio-controlled helicopters.

The drone uses an Arduino DUE with a custom shield and a PCB to control the system via Electronic Speed Controllers. The drone also has a feedback loop that will try to level the drone using a MPU6050.

We were able to prove that this method of drone propulsion is possible and is safer than using hard plastic propellers.

Project Videos