Individual Progress Report

Description

The Individual Progress Report (IPR) is a chance to put your contributions to the team's progress in writing. The report will discuss not only the components and subsystems you have personally been responsible for, but what components you have helped work on as well. It is important to talk about the relation between your work and your teammates' work as well.

Requirements and Grading

This report should be 5-12 pages of your own work. This means that you cannot take paragraphs/text from your Design Review document, since that was a collaborative effort. The IPR Grading Rubric describes what we look for in grading this assignment. The requirements are expanded on below:

  1. General: Concise writing is encouraged, but it is important that all pertinent information is conveyed. All figures should be labeled and formatted consistently.
  2. Formatting: Please refer to the Final Report Guidelines for general writing guidelines, since the format of this report should be very similar to that of the final report. Note that each component of the Final Report may be tailored to the parts of the project the individual has been active in.
  3. Introduction: First, discuss what portion of the system you have been active in designing connects to which portion of a different subsystem, and how these interact to complete an overall objective. Then discuss what you have accomplished, what you are currently working on, and what you still have left to do.
  4. Design: Discuss the design work you have done so far. It is expected that you have done calculations and/or found relevant equations, created circuits for your parts of the project, and simulated / drawn schematics for your parts. You may have already, at a high level, discussed how your part fits into the rest of the project, but you should expand on the technical details and interface between your module(s) and the other modules of the project.
  5. Verification: Testing and verification is also very important. Make sure you describe each test that was performed and its procedure in detail, and give quantitative, meaningful results. Also describe tests that have yet to be performed. We should be convinced that if all your tests will pass, your part of the project will work.
  6. Conclusion: Discuss a plan and timeline for completing your responsibilities and your project as a whole. Also explain the ethical considerations of your project by consulting the IEEE Code of Ethics, ACM Code of Ethics, or another relevant Code of Ethics.
  7. Citations: You need citations. Cite sources for equations, Application Notes you referenced in your design, and any literature you used to help design or verify your work. If you checked something from another course's lecture slides, Google'd for things related to your project, or anything similar, then you have something you need to cite. At the very least, since you have talked about the ethical considerations of your project as it relates to a published code of ethics (e.g., IEEE or ACM), you should cite those!

Submission and Deadlines

The IPR should be submitted on canvas in PDF format by the deadline listed on the Course Calendar.

Phone Audio FM Transmitter

Madigan Carroll, Dan Piper, James Wozniak

Phone Audio FM Transmitter

Featured Project

# Phone Audio FM Transmitter

Team Members:

James Wozniak (jamesaw)

Madigan Carroll (mac18)

Dan Piper (depiper2)

# Problem

In cars with older stereo systems, there are no easy ways to play music from your phone as the car lacks Bluetooth or other audio connections. There exist small FM transmitters that circumvent this problem by broadcasting the phone audio on some given FM wavelength. The main issue with these is that they must be manually tuned to find an open wavelength, a process not easily or safely done while driving.

# Solution

Our solution is to build upon these preexisting devices, but add the functionality of automatically switching the transmitter’s frequency, creating a safer and more enjoyable experience. For this to work, several components are needed: a Bluetooth connection to send audio signals from the phone to the device, an FM receiver and processing unit to find the best wavelength to transmit on, and an FM transmitter to send the audio signals to be received by the car stereo.

# Solution Components

## Subsystem 1 - Bluetooth Interface

This system connects the user’s phone, or other bluetooth device to our project. It should be a standalone module that handles all the bluetooth functions, and outputs an audio signal that will be modulated and transmitted by the FM Transmitter. Note: this subsystem may be included in the microcontroller.

## Subsystem 2 - FM Transmitter

This module will transmit the audio signal output by our bluetooth module. It will modulate the signal to FM frequency chosen by the control system. Therefore, the transmitting frequency must be able to be tuned electronically.

## Subsystem 3 - FM Receiver

This module will receive an FM signal. It must be able to be adjusted electronically (not with a mechanical potentiometer) with a signal from the control system. It does not need to fully demodulate the signal, as we only need to measure the power in the signal. Note: if may choose to have a single transceiver, in which case the receiver subsystem and the transmitter subsystem will be combined into a single subsystem.

## Subsystem 4 - Control System

The control system will consist of a microcontroller and surrounding circuitry, capable of reading the power output of the FM receiver, and outputting a signal to adjust the receiving frequency, in order to scan the FM band. We will write and upload a program to determine the most suitable frequency. It will then output a signal to the FM transmitter to adjust the transmitting frequency to the band determined above. We are planning on using the ESP32-S3-WROOM-1 microcontroller given its built-in Bluetooth module and low power usage.

## Subsystem 5 - Power

Our device is designed to be used in a car, so It must be able to be powered by a standard automobile auxiliary power outlet which provides 12-13V DC and usually at least 100W. This should be more than sufficient. We plan to purchase a connector that can be plugged into this port, with leads that we can wire to our circuit.

# Criterion for Success

The device can pair with a phone via bluetooth and receive an audio signal from a phone.

The Device transmits an FM signal capable of being detected by a standard fm radio

The Device can receive FM signals and scan the FM bands.

The digital algorithm is able to compare the strength of different channels and determine the optimal channel.

The device is able to automatically switch the transmitting channel to the predetermined best channel when the user pushes a button.