Final Demo :: ECE 445 - Senior Design Laboratory

Final Demo

Description

The Final Demo is the single most important measure (and assignment) for the success of your project. The evaluation is holistic, focused on whether your project is completed, well-designed, reliable, and usable. You will demo your project to your professor, at least one TA, and a few peer reviewers. Other guests (e.g. alumni, high school students, sponsors, or other department affiliates) may also be present.

Requirements and Grading

Students must be able to demonstrate the full functionality of their project by proving that all the requirements in their Requirements and Verification (RV) table are met. Students must bring a printed out version of their block diagram, high level requirements, and RV table. Credit will not be given for feature which cannot be demonstrated.

For tests that are lengthy or require equipment not available at the time of demo, students should have their lab notebooks or printouts ready to show testing data. For any portion of the project which does not function as specified, students should have hypotehses (and supporting evidence) of what is causing the problem. If your demo needs to happen somewhere that is not the Senior Design Lab, you must communicate this with your TA!

The design team should be ready to justify design decisions and discuss any technical aspect of the project or its performance (not just one's own responsibilities). Quantitative results are expected wherever applicable. The demo grade depends on the following general areas: See the Demo Grading Rubric for specific details, but in general, show the following:

  1. Completion: The project has been entirely completed.
  2. Integration: The project is well-integrated, looking more like a final product than a prototype.
  3. Performance: Performance is completely verified, and operation is reliable.
  4. Understanding: Everyone on the project team must must be able to demonstrate understanding of his/her technical work and show that all members have contributed significantly.
  5. Polish & Attention to Detail: The project is well-polished with the user in mind. Good attention to detail is afforded to useability, presentation, and packaging.

 

Submission and Deadlines

Signing-up for a demo time is handled through the PACE system. Again, remember to sign up for a peer review as well.

Cypress Robot Kit

Todd Nguyen, Byung Joo Park, Alvin Wu

Cypress Robot Kit

Featured Project

Cypress is looking to develop a robotic kit with the purpose of interesting the maker community in the PSOC and its potential. We will be developing a shield that will attach to a PSoC board that will interface to our motors and sensors. To make the shield, we will design our own PCB that will mount on the PSoC directly. The end product will be a remote controlled rover-like robot (through bluetooth) with sensors to achieve line following and obstacle avoidance.

The modules that we will implement:

- Motor Control: H-bridge and PWM control

- Bluetooth Control: Serial communication with PSoC BLE Module, and phone application

- Line Following System: IR sensors

- Obstacle Avoidance System: Ultrasonic sensor

Cypress wishes to use as many off-the-shelf products as possible in order to achieve a “kit-able” design for hobbyists. Building the robot will be a plug-and-play experience so that users can focus on exploring the capabilities of the PSoC.

Our robot will offer three modes which can be toggled through the app: a line following mode, an obstacle-avoiding mode, and a manual-control mode. In the manual-control mode, one will be able to control the motors with the app. In autonomous modes, the robot will be controlled based off of the input from the sensors.