Final Demo :: ECE 445 - Senior Design Laboratory

Final Demo

Description

The Final Demo is the single most important measure (and assignment) for the success of your project. The evaluation is holistic, focused on whether your project is completed, well-designed, reliable, and usable. You will demo your project to your professor, at least one TA, and a few peer reviewers. Other guests (e.g. alumni, high school students, sponsors, or other department affiliates) may also be present.

Requirements and Grading

Students must be able to demonstrate the full functionality of their project by proving that all the requirements in their Requirements and Verification (RV) table are met. Students must bring a printed out version of their block diagram, high level requirements, and RV table. Credit will not be given for feature which cannot be demonstrated.

For tests that are lengthy or require equipment not available at the time of demo, students should have their lab notebooks or printouts ready to show testing data. For any portion of the project which does not function as specified, students should have hypotehses (and supporting evidence) of what is causing the problem. If your demo needs to happen somewhere that is not the Senior Design Lab, you must communicate this with your TA!

The design team should be ready to justify design decisions and discuss any technical aspect of the project or its performance (not just one's own responsibilities). Quantitative results are expected wherever applicable. The demo grade depends on the following general areas: See the Demo Grading Rubric for specific details, but in general, show the following:

  1. Completion: The project has been entirely completed.
  2. Integration: The project is well-integrated, looking more like a final product than a prototype.
  3. Performance: Performance is completely verified, and operation is reliable.
  4. Understanding: Everyone on the project team must must be able to demonstrate understanding of his/her technical work and show that all members have contributed significantly.
  5. Polish & Attention to Detail: The project is well-polished with the user in mind. Good attention to detail is afforded to useability, presentation, and packaging.

 

Submission and Deadlines

Signing-up for a demo time is handled through the PACE system. Again, remember to sign up for a peer review as well.

Amphibious Spherical Explorer

Kaiwen Chen, Junhao Su, Zhong Tan

Amphibious Spherical Explorer

Featured Project

The amphibious spherical explorer (ASE) is a spherical robot for home monitoring, outdoor adventure or hazardous environment surveillance. Due to the unique shape of the robot, ASE can travel across land, dessert, swamp or even water by itself, or be casted by other devices (e.g. slingshot) to the mission area. ASE has a motion-sensing system based on Inertial Measurement Unit (IMU) and rotary magnetic encoder, which allows the internal controller to adjust its speed and attitude properly. The well-designed control system makes the robot free of visible wobbliness when it is taking actions like acceleration, deceleration, turning and rest. ASE is also a platform for research on control system design. The parameters of the internal controller can be assigned by an external control panel in computer based on MATLAB Graphic User Interface (GUI) which communicates with the robot via a WiFi network generated by the robot. The response of the robot can be recorded and sent back to the control panel for further analysis. This project is completely open-sourced. People who are interested in the robot can continue this project for more interesting features, such as adding camera for real-time surveillance, or controller design based on machine learning.

Project Videos