Design Review

Video Lecture

Video, Slides

updated Fa 2020

Description

The design review is a 30-minute meeting intended to make sure that the team has a successful project. Students will present and defend their design while instructors and TAs critique it, identifying any infeasible or unsafe aspects and steering the team toward success. Instructors and TAs will ask questions throughout and may choose the order of blocks to be discussed. Specifically, here is what the course staff are looking for:
  1. Evidence that the overall design and high-level requirements solve the problem stated.
  2. Check if the overall design has suitable difficulty for course standards and completion in one semester. Scope may need to be adjusted if otherwise.
  3. Check team members' engineering preparedness to implement each module.
  4. Check that each team member is assigned an equal portion of the project effort.
Prepare for the following sequence.
  1. Promptly project the design document on projector.
  2. Introduce team members (name, major, and the project part each is in charge of).
  3. Present problem statement and proposed solution (<1 minutes) following the template in DDC (see Description 1.a)
  4. Present design overview (<5 minutes)
    1. High-level requirements: check DDC
    2. Block diagram: check DDC
    3. Physical design
  5. For the remainder of the review, you will participate in a detailed discussion of the design. Plan to cover each block, one at a time, beginning with the most critical. The course staff will ask questions and may step in to guide the discussion. Be prepared to discuss all aspects of your design with a focus on the following.
    1. Requirements & Verification: (see DDC); We'll look at all the important block requirements. Prepare to justify the components chosen and compare with important alternatives.
    2. Evidence that the design meets requirements (use the following as applicable)
      • Simulations
      • Calculations
      • Measurements
      • Schematics
      • Flowcharts
      • Mechanical drawings
      • Tolerance analysis: check DDC
      • Schedule: Suggestions:
        1. Think about what you can do in parallel, what has to be sequential;
        2. Work on hardware before software;
        3. Perform unit testing before system testing;
        4. Unit test each module on a breadboard before starting PCB design);
        5. Leave margin for unexpected delays or accidents. You are mostly responsible for those exceptions, just as if you were the owner of this senior design business;
      • Cost:hourly rate is ~$50 not $10. In addition, apply the 2.5x overhead multiplier ($125/hr is the cost of your senior design business), which includes the cost of salaries of you, your boss, CxOs, sales, janitors, etc.

Grading

The DR Grading Rubric is available to guide your DR preparation. Two sample Design Review documents are available as examples of what we expect: a Good Sample DR, a Moderate Sample DR, and a good example R&V table as it was presented in a final report. Notes are made in red type to point out what is lacking. Note that the grading rubrics and point structure may have evolved since these reports were generated, so use them only as a guide as to what we are generally expecting.

Submission and Deadlines

Your design document should be uploaded to PACE in PDF format by Midnight the Friday before design review. If you uploaded a mock DR document to PACE, please make sure that it has been removed before uploading the final DR..

Tech must-know and FAQ for design

Here is the link of "Tech must-know and FAQ for design" which is accessible after logging into g.illinois.edu.

Over semesters, ECE445 course staff have encountered repeated mistakes from students. The document above is designed to provide students with the essential knowledge needed in order to have a good design. Spending 5 min reading it might save you 15 hours later. Also, there might be some quiz questions in your DDC or Design Review. Please help us improve this document. We value your feedback!

Interactive Proximity Donor Wall Illumination

Sungmin Jang, Anita Jung, Zheng Liu

Interactive Proximity Donor Wall Illumination

Featured Project

Team Members:

Anita Jung (anitaj2)

Sungmin Jang (sjang27)

Zheng Liu (zliu93)

Link to the idea: https://courses.engr.illinois.edu/ece445/pace/view-topic.asp?id=27710

Problem:

The Donor Wall on the southwest side of first floor in ECEB is to celebrate and appreciate everyone who helped and donated for ECEB.

However, because of poor lighting and color contrast between the copper and the wall behind, donor names are not noticed as much as they should, especially after sunset.

Solution Overview:

Here is the image of the Donor Wall:

http://buildingcampaign.ece.illinois.edu/files/2014/10/touched-up-Donor-wall-by-kurt-bielema.jpg

We are going to design and implement a dynamic and interactive illuminating system for the Donor Wall by installing LEDs on the background. LEDs can be placed behind the names to softly illuminate each name. LEDs can also fill in the transparent gaps in the “circuit board” to allow for interaction and dynamic animation.

And our project’s system would contain 2 basic modes:

Default mode: When there is nobody near the Donor Wall, the names are softly illuminated from the back of each name block.

Moving mode: When sensors detect any stimulation such as a person walking nearby, the LEDs are controlled to animate “current” or “pulses” flowing through the “circuit board” into name boards.

Depending on the progress of our project, we have some additional modes:

Pressing mode: When someone is physically pressing on a name block, detected by pressure sensors, the LEDs are controlled to

animate scattering of outgoing light, just as if a wave or light is emitted from that name block.

Solution Components:

Sensor Subsystem:

IR sensors (PIR modules or IR LEDs with phototransistor) or ultrasonic sensors to detect presence and proximity of people in front of the Donor Wall.

Pressure sensors to detect if someone is pressing on a block.

Lighting Subsystem:

A lot of LEDs is needed to be installed on the PCBs to be our lighting subsystem. These are hidden as much as possible so that people focus on the names instead of the LEDs.

Controlling Subsystem:

The main part of the system is the controlling unit. We plan to use a microprocessor to process the signal from those sensors and send signal to LEDs. And because the system has different modes, switching between them correctly is also important for the project.

Power Subsystem:

AC (Wall outlet; 120V, 60Hz) to DC (acceptable DC voltage and current applicable for our circuit design) power adapter or possible AC-DC converter circuit

Criterion for success:

Whole system should work correctly in each mode and switch between different modes correctly. The names should be highlighted in a comfortable and aesthetically pleasing way. Our project is acceptable for senior design because it contains both hardware and software parts dealing with signal processing, power, control, and circuit design with sensors.

Project Videos