Design Review

Video Lecture

Video, Slides

updated Fa 2020

Description

The design review is a 30-minute meeting intended to make sure that the team has a successful project. Students will present and defend their design while instructors and TAs critique it, identifying any infeasible or unsafe aspects and steering the team toward success. Instructors and TAs will ask questions throughout and may choose the order of blocks to be discussed. Specifically, here is what the course staff are looking for:
  1. Evidence that the overall design and high-level requirements solve the problem stated.
  2. Check if the overall design has suitable difficulty for course standards and completion in one semester. Scope may need to be adjusted if otherwise.
  3. Check team members' engineering preparedness to implement each module.
  4. Check that each team member is assigned an equal portion of the project effort.
Prepare for the following sequence.
  1. Promptly project the design document on projector.
  2. Introduce team members (name, major, and the project part each is in charge of).
  3. Present problem statement and proposed solution (<1 minutes) following the template in DDC (see Description 1.a)
  4. Present design overview (<5 minutes)
    1. High-level requirements: check DDC
    2. Block diagram: check DDC
    3. Physical design
  5. For the remainder of the review, you will participate in a detailed discussion of the design. Plan to cover each block, one at a time, beginning with the most critical. The course staff will ask questions and may step in to guide the discussion. Be prepared to discuss all aspects of your design with a focus on the following.
    1. Requirements & Verification: (see DDC); We'll look at all the important block requirements. Prepare to justify the components chosen and compare with important alternatives.
    2. Evidence that the design meets requirements (use the following as applicable)
      • Simulations
      • Calculations
      • Measurements
      • Schematics
      • Flowcharts
      • Mechanical drawings
      • Tolerance analysis: check DDC
      • Schedule: Suggestions:
        1. Think about what you can do in parallel, what has to be sequential;
        2. Work on hardware before software;
        3. Perform unit testing before system testing;
        4. Unit test each module on a breadboard before starting PCB design);
        5. Leave margin for unexpected delays or accidents. You are mostly responsible for those exceptions, just as if you were the owner of this senior design business;
      • Cost:hourly rate is ~$50 not $10. In addition, apply the 2.5x overhead multiplier ($125/hr is the cost of your senior design business), which includes the cost of salaries of you, your boss, CxOs, sales, janitors, etc.

Grading

The DR Grading Rubric is available to guide your DR preparation. Two sample Design Review documents are available as examples of what we expect: a Good Sample DR, a Moderate Sample DR, and a good example R&V table as it was presented in a final report. Notes are made in red type to point out what is lacking. Note that the grading rubrics and point structure may have evolved since these reports were generated, so use them only as a guide as to what we are generally expecting.

Submission and Deadlines

Your design document should be uploaded to PACE in PDF format by Midnight the Friday before design review. If you uploaded a mock DR document to PACE, please make sure that it has been removed before uploading the final DR..

Tech must-know and FAQ for design

Here is the link of "Tech must-know and FAQ for design" which is accessible after logging into g.illinois.edu.

Over semesters, ECE445 course staff have encountered repeated mistakes from students. The document above is designed to provide students with the essential knowledge needed in order to have a good design. Spending 5 min reading it might save you 15 hours later. Also, there might be some quiz questions in your DDC or Design Review. Please help us improve this document. We value your feedback!

Habit-Forming Toothbrush Stand

John Kim, Quinn Palanca, Rahul Vasanth

Habit-Forming Toothbrush Stand

Featured Project

I spoke with a TA that approved this idea during office hours today, and they said I should submit it as a project proposal.

# Habit-Forming Toothbrush Stand

Team Members:

- Rahul Vasanth (rvasant2)

- Quinn Andrew Palanca (qpalanc2)

- John Jung-Yoon Kim (johnjk5)

# Problem

There are few habits as impactful as good dental hygiene. Brushing teeth in the morning and night can significantly improve health outcomes. Many struggle with forming and maintaining this habit. Parents might have a difficult time getting children to brush in the morning and before sleep while homeless shelter staff, rehab facility staff, and really, anyone looking to develop and track this habit may want a non-intrusive, privacy-preserving method to develop and maintain the practice of brushing their teeth in the morning. Keeping track of this information and but not storing it permanently through a mobile application is something that does not exist on the market. A small nudge is needed to keep kids, teenagers, and adults of all ages aware and mindful about their brushing habits. Additionally, many tend to zone out while brushing their teeth because they are half asleep and have no idea how long they are brushing.

# Solution

Our solution is catered toward electric toothbrushes. Unlike specific toothbrush brands that come with mobile applications, our solution applies to all electric toothbrushes, preserves privacy, and reduces screen time. We will implement a habit-forming toothbrush stand with a microcontroller, sensors, and a simple LED display that houses the electric toothbrush. A band of sensors will be wrapped around the base of the toothbrush. Lifting the toothbrush from the stand, turning it on, and starting to brush displays a timer that counts seconds up to ten minutes. This solves the problem of brushing too quickly or losing track of time and brushing for too long. Additionally, the display will provide a scorecard for brushing, with 14 values coming from (morning, night) x (6daysago, 5daysago, . . . , today) for a "record" of one week and 14 possible instances of brushing. This will augment the user's awareness of any new trends, and potentially help parents, their children, and other use cases outlined above. We specifically store just one week of data as the goal is habit formation and not permanent storage of potentially sensitive health information in the cloud.

# Solution Components

## Subsystem 1 - Sensor Band

The sensor band will contain a Bluetooth/Wireless Accelerometer and Gyroscope, or Accelerometer, IR sensor (to determine height lifted above sink), Bluetooth/Wireless connection to the microcontroller. This will allow us to determine if the electric toothbrush has been turned on. We will experiment with the overall angle, but knowing whether the toothbrush is parallel to the ground, or is lifted at a certain height above the sink will provide additional validation. These outputs need to be communicated wirelessly to the habit-forming toothbrush stand.

Possibilities: https://www.amazon.com/Accelerometer-Acceleration-Gyroscope-Electronic-Magnetometer/dp/B07GBRTB5K/ref=sr_1_12?keywords=wireless+accelerometer&qid=1643675559&sr=8-12 and individual sensors which we are exploring on Digikey and PCB Piezotronics as well.

## Subsystem 2 - Toothbrush Base/Stand and Display

The toothbrush stand will have a pressure sensor to determine when the toothbrush is lifted from the stand (alternatively, we may also add on an IR sensor), a microcontroller with Bluetooth capability, and a control unit to process sensor outputs as well as an LED display which will be set based on the current state. Additionally, the stand will need an internal clock to distinguish between morning and evening and mark states accordingly. The majority of sensors are powered by 3.3V - 5V. If we use a battery, we may include an additional button to power on the display (or just have it turn on when the pressure sensor / IR sensor output confirms the toothbrush has been lifted, or have the device plug into an outlet.

# Criterion For Success

1. When the user lifts the toothbrush from the stan and it begins to vibrate (signaling the toothbrush is on), the brushing timer begins and is displayed.

2. After at least two minutes have passed and the toothbrush is set back on the stand, the display correctly marks the current day and period (morning or evening).

3. Track record over current and previous days and the overall weekly record is accurately maintained. At the start of a new day, the record is shifted appropriately.

Project Videos