Team Contract Fulfillment :: ECE 445 - Senior Design Laboratory

Team Contract Fulfillment

Description

The team contract fulfillment assignment is a document describing whether the obligations set out in the team contract were met. Project groups should write no more than 2 pages double spaced. This document should have five brief sections each of which corresponds to a section in the team contract:

Project Goals: This section should begin with a short description of what you planned on building at the start of the semester. What were the goals of your project? You should elaborate on whether these goals were met.

Expectations: This section should address whether the expectations set in the “Expectations” section  in your team contract were met. Essentially, were the ground rules your team set out at the start of the semester followed?
Roles: At the beginning of the course, your team outlined roles as part of the team contract. Please describe what your roles are now and–if your roles changed–how they evolved as the semester progressed. Did you assign a leader? Were pieces of the project tackled as a group or individually? Why?
Agenda: How did your team make decisions about the project? How were goals set? When an issue with the project came up, how did your team plan to fix it?
Team Issues: This section should cover team-related issues that your group encountered during the course. What sort of problems did you run into? How were they dealt with? Was the process set out in the team contract followed?  In hindsight could you have done things differently to have a better team experience?

Requirements and Grading

Each section is worth 4 points. Points are awarded based on thoroughness. A section that adequately addresses the questions above will receive 4 points.

Submission and Deadlines

The team contract fulfillment document is a group assignment and should be submitted on canvas before the deadline listed on the Calendar.

Autonomous Sailboat

Riley Baker, Arthur Liang, Lorenzo Rodriguez Perez

Autonomous Sailboat

Featured Project

# Autonomous Sailboat

Team Members:

- Riley Baker (rileymb3)

- Lorenzo Pérez (lr12)

- Arthur Liang (chianl2)

# Problem

WRSC (World Robotic Sailing Championship) is an autonomous sailing competition that aims at stimulating the development of autonomous marine robotics. In order to make autonomous sailing more accessible, some scholars have created a generic educational design. However, these models utilize expensive and scarce autopilot systems such as the Pixhawk Flight controller.

# Solution

The goal of this project is to make an affordable, user- friendly RC sailboat that can be used as a means of learning autonomous sailing on a smaller scale. The Autonomous Sailboat will have dual mode capability, allowing the operator to switch from manual to autonomous mode where the boat will maintain its current compass heading. The boat will transmit its sensor data back to base where the operator can use it to better the autonomous mode capability and keep track of the boat’s position in the water. Amateur sailors will benefit from the “return to base” functionality provided by the autonomous system.

# Solution Components

## On-board

### Sensors

Pixhawk - Connect GPS and compass sensors to microcontroller that allows for a stable state system within the autonomous mode. A shaft decoder that serves as a wind vane sensor that we plan to attach to the head of the mast to detect wind direction and speed. A compass/accelerometer sensor and GPS to detect the position of the boat and direction of travel.

### Actuators

2 servos - one winch servo that controls the orientation of the mainsail and one that controls that orientation of the rudder

### Communication devices

5 channel 2.4 GHz receiver - A receiver that will be used to select autonomous or manual mode and will trigger orders when in manual mode.

5 channel 2.4 GHz transmitter - A transmitter that will have the ability to switch between autonomous and manual mode. It will also transfer servos movements when in manual mode.

### Power

LiPo battery

## Ground control

Microcontroller - A microcontroller that records sensor output and servo settings for radio control and autonomous modes. Software on microcontroller processes the sensor input and determines the optimum rudder and sail winch servo settings needed to maintain a prescribed course for the given wind direction.

# Criterion For Success

1. Implement dual mode capability

2. Boat can maintain a given compass heading after being switched to autonomous mode and incorporates a “return to base” feature that returns the sailboat back to its starting position

3. Boat can record and transmit servo, sensor, and position data back to base

Project Videos