Breadboard Demo

Description

The Breadboard Demo is an informal but mandatory event. Its purpose is to show your instructor and TA a circuit that you have been working on in the lab for your project. It is expected that the circuit will include the microprocessor you will be using in your project (it can be mounted on a development board) and it will be connected to a project subsystem. The microprocessor should have a program downloaded onto it that allows it to communicate with the subsystem, i.e., control the subsystem or receive data from it. It is expected that the power source for the circuit will be a laboratory power supply. The function of the subsystem should be demonstrated. The commands or data should be displayed on a pc or other display means. You should be able to explain how the circuit is used in the project and be able to justify design choices. A Breadboard Checklist will be provided and filled out.). Use the following format:

    See the Breadboard Demo Rubric for specific details.

Grading

Full Credit (20 points) will be given if the circuit works, is of adequate complexity, and a good explanation of its features is given by the team. Point reductions will be given if the circuit fails to work (-2), lacks complexity (-2), or seems inappropriate for your project (-2). The Breadboard Demo is a team activity and results in a team score.

Propeller-less Multi-rotor

Ignacio Aguirre Panadero, Bree Peng, Leo Yamamae

Propeller-less Multi-rotor

Featured Project

Our project explored the every-expanding field of drones. We wanted to solve a problem with the dangers of plastic propellers as well as explore new method of propulsion for drones.

Our design uses a centrifugal fan design inspired by Samm Shepard's "This is NOT a Propeller" video where he created a centrifugal fan for a radio controlled plane. We were able to design a fan that has a peak output of 550g per fan that is safe when crashing and when the impeller inside damaged.

The chassis and fans are made of laser-cut polystyrene and is powered using brushless motors typically used for radio-controlled helicopters.

The drone uses an Arduino DUE with a custom shield and a PCB to control the system via Electronic Speed Controllers. The drone also has a feedback loop that will try to level the drone using a MPU6050.

We were able to prove that this method of drone propulsion is possible and is safer than using hard plastic propellers.

Project Videos