Course Overview

Welcome!

Welcome to ECE 445! If you've looked at the course Calendar, you've probably already noticed that this class is quite different from most other classes in the department. The class only meets as a whole for the first few weeks of the semester. During these lectures you will meet the Course Staff, learn about specific assignments, requirements, and resources for the course, and have a chance to meet other students to share ideas and form teams. These are some of the most important weeks for the class since the decisions you make during this time will determine what you'll get out of this class and, in many ways, how much you'll enjoy it.

Outside of lecture, you are expected to be working on your own to develop ideas and form teams. You are also expected to actively participate on the web board to exchange ideas, receive feedback from course staff, and eventually get your project idea approved. Once your team has a project approved, you will be assigned a TA, with whom you will have weekly meetings. Think of your TA as a project manager. Keep in mind that they are not there to do the work for you. Rather, they are there to keep you on track, point you towards resources (both within and outside of the department), and evaluate the result of your efforts.

Expectations and Requirements

We have high expectations for students participating in ECE 445. You are soon to be alumni of one of the top ECE departments of the world. Our alumni hold themselves to high technical and professional standards of conduct. In general, projects are expected to be safe, ethical, and have a level of design complexity commensurate with the rigor of the ECE Illinois curriculum. Requirements for specific assignments due throughout the semester can be found by looking through the Grading Scheme for the course. Please read through this documentation well before each assignment is due. Specific due dates can be found on the course Calendar.

Below are a few words of wisdom to keep in mind throughout the semester to increase your enjoyment and success in the course:

Economic Overnight Outlet

Chester Hall, Sabrina Moheydeen, Jarad Prill

Featured Project

**Team**

- Chester Hall (chall28), Sabrina Moheydeen (sabrina7), Jarad Prill (jaradjp2)

**Title**

- Economic Overnight Outlet

**Problem**

- Real-time pricing in ISOs, such as the Midwest, California, New England, and New York, provides differentials in electricity prices throughout the day that can be taken advantage of. The peak price of electricity compared to the minimum prices can feature variations of up to 70%. With price agnostic charging, this results in unnecessary costs for those who charge devices (see attached spreadsheet). This same principle can thus be scaled for large commercialized applications requiring high-capacity batteries, resulting in a higher savings potential to be taken advantage of.

- Calcs: https://docs.google.com/spreadsheets/d/1JBzt2xm0Ue4a_teosdak623h0zSP5nHRKi7Wi8rMcPo/edit?usp=sharing

**Solution Overview**

- We will create a device that can fetch real-time prices from regional ISOs and enable charging when prices are lowest. Our primary application will be centered towards warehouse electric vehicles using high-capacity, fast-charging lithium ion batteries. Such vehicles include forklifts, cleaning machines, and golf carts.

**Solution Components**

- [ISO LMP API] - Through use of a WiFi-enabled microcontroller we can fetch real-time prices and build our control system around these values.

- [Passive High Performance Protection] - In order to provide downstream safety to the loads, we will ensure the device features surge protection and is rated for the high current of fast charging. The switching of the connection will be done with a contactor whose coil is energized according to the microcontroller.

- [Device Display] - LCD display to show information about the current energy price and the current day’s savings.

- [Manual User Override] - The device will feature a manual toggle switch to either enable or disable the cost-optimized charging feature allowing users to charge loads at any time, not necessarily the cheapest.

- [User Interface] - Software application to allow for user input regarding the time of day the device must be charged by. The application will also display information about total savings per week, month, or year and savings over the device’s lifetime.

- [Control Power Converter] - In order to run the low voltage control systems from the outlet, either 120VAC or 3-phase 480VAC, we will need to step this down to a low DC voltage of around 3.3VDC.

- [Memory System] - Microcontroller capable of performing control function within user specified parameters.

- [Device Connection] - Connectivity to the battery of the device being charged so that current state of charge (SoC) information can be used. Potential experimental filter algorithms will be used in order to estimate the SoC automatically, without requiring the user to input the specific data of the device being used.

**Criterion for Success**

- Able to charge devices at lowest cost times of the day and display current pricing and savings information. The upfront cost of a large-scale reproducible product must be less than the lifetime savings incurred by purchasing the product. Users without an engineering background can easily analyze their savings to visually recognize the device’s benefit.