Mock Presentation

Description

Similar to the Design Doc Check and the Mock Demo, the Mock Presentation is an informal, mandatory event designed to better prepare you for your Final Presentation. In these sessions, you will present a few of your slides (about 10-15 minutes), and get feedback from the course staff as well as a few invited Department of Communication TAs. You will also be able to see a few of your peers' Mock Presentations, as there are up to 3 teams per time slot.

Requirements and Grading

The Mock Presentation is meant to be an opportunity for you to get feedback on a subset of your final presentation. It is recommended that you choose some aspect of your project, and present the design, results, and conclusions from that aspect. In order to get relevant feedback on your presentation skills, your Mock Presentation should also have an introduction and conclusion. You will receive feedback on your delivery, the format of your slides, and the organization of your presentation. Your slides should generally include:

  1. Title slide: Names, group #, title.
  2. Introduction slide: What is the project?
  3. Objective slide: What problem does this solve?
  4. Design Slides: A few slides on design, requirements and verification (should include block diagram, math, graphs, figures, tables).
  5. Conclusion: Wrap things up, future work.

Mock presentation is graded credit/no credit based on attendance and apparent effort; showing up completely unprepared will earn no credit.

Submission and Deadlines

Sign-up is handled through PACE. Time slots are 1 hour long, and multiple groups will share a time slot. This will give you an opportunity to give and receive feedback from your peers. You will be required to stay until all groups have presented and received feedback.

BusPlan

Aashish Kapur, Connor Lake, Scott Liu

BusPlan

Featured Project

# People

Scott Liu - sliu125

Connor Lake - crlake2

Aashish Kapur - askapur2

# Problem

Buses are scheduled inefficiently. Traditionally buses are scheduled in 10-30 minute intervals with no regard the the actual load of people at any given stop at a given time. This results in some buses being packed, and others empty.

# Solution Overview

Introducing the _BusPlan_: A network of smart detectors that actively survey the amount of people waiting at a bus stop to determine the ideal amount of buses at any given time and location.

To technically achieve this, the device will use a wifi chip to listen for probe requests from nearby wifi-devices (we assume to be closely correlated with the number of people). It will use a radio chip to mesh network with other nearby devices at other bus stops. For power the device will use a solar cell and Li-Ion battery.

With the existing mesh network, we also are considering hosting wifi at each deployed location. This might include media, advertisements, localized wifi (restricted to bus stops), weather forecasts, and much more.

# Solution Components

## Wifi Chip

- esp8266 to wake periodically and listen for wifi probe requests.

## Radio chip

- NRF24L01 chip to connect to nearby devices and send/receive data.

## Microcontroller

- Microcontroller (Atmel atmega328) to control the RF chip and the wifi chip. It also manages the caching and sending of data. After further research we may not need this microcontroller. We will attempt to use just the ens86606 chip and if we cannot successfully use the SPI interface, we will use the atmega as a middleman.

## Power Subsystem

- Solar panel that will convert solar power to electrical power

- Power regulator chip in charge of taking the power from the solar panel and charging a small battery with it

- Small Li-Ion battery to act as a buffer for shady moments and rainy days

## Software and Server

- Backend api to receive and store data in mongodb or mysql database

- Data visualization frontend

- Machine learning predictions (using LSTM model)

# Criteria for Success

- Successfully collect an accurate measurement of number of people at bus stops

- Use data to determine optimized bus deployment schedules.

- Use data to provide useful visualizations.

# Ethics and Safety

It is important to take into consideration the privacy aspect of users when collecting unique device tokens. We will make sure to follow the existing ethics guidelines established by IEEE and ACM.

There are several potential issues that might arise under very specific conditions: High temperature and harsh environment factors may make the Li-Ion batteries explode. Rainy or moist environments may lead to short-circuiting of the device.

We plan to address all these issues upon our project proposal.

# Competitors

https://www.accuware.com/products/locate-wifi-devices/

Accuware currently has a device that helps locate wifi devices. However our devices will be tailored for bus stops and the data will be formatted in a the most productive ways from the perspective of bus companies.