Project

# Title Team Members TA Documents Sponsor
41 Continuous Roll-To-Roll LB Film Deposition Machine
Boyang Fang
Han Li
Ruiqi Zhao
Zhixian Zuo
design_document3.pdf
final_paper2.pdf
proposal2.pdf
Kemal Celebi
# Team member
- Boyang Fang 654045608
- Han Li 652796808
- Ruiqi Zhao 658317696
- Zhixian Zuo 669424542

# Title
Continuous Roll-To-Roll LB Film Deposition Machine


# Problem Statement
The large-scale production of lb film has great economic potential, but there are technical problems. At present, the world has failed to achieve large-scale mass production of lb film, and the development cost is extremely expensive.

# Solution Overview
This project is aimed at solving the mass production problem of LB film using a continuous roll-to-roll production method which can make a great contribution to the industry application of LB film.

# Solution Components
The project consists of three parts:

1. The production system, including stainless steel tanks, is used for loading liquid solvents on which nanomaterials float. Above one side of the slot is a nanomaterial burette for adding nanomaterial to the slot, which is controlled by a computer system.
2. The collection system consists of a bracket and five stainless steel rolls, two of which are used to collect Ptes with nanomaterials attached to the surface and three of which are used to adjust the slope of the contact area. The reel is connected to the transmission and motor and is controlled by a computer system.
3. Electromechanical control system with all computer components built in, used to adjust the traditional speed, find the best production conditions, control the operation of the system.

# Software Components:
1. The speed of stainless steel drum operation is adjusted by setting the code, and the speed is expected to be 0.55-20 mm per minute. Therefore, it is necessary to visualize the speed of stainless steel through the computer and observe the production results in time.
2. The height of the stainless steel drum is controlled by a computer to achieve different slopes of the film in order to find and stabilize the best Angle of tension diffusion to achieve maximum production efficiency.

# Criterion for Success
1. Find the best moving speed of rolling speed, syringe pump speed and angle between interface and film surface.
2. Solve the problem of material will gp through the film from two sides.
3. Achieve the production of regularly LB film.

Wireless IntraNetwork

Featured Project

There is a drastic lack of networking infrastructure in unstable or remote areas, where businesses don’t think they can reliably recoup the large initial cost of construction. Our goal is to bring the internet to these areas. We will use a network of extremely affordable (<$20, made possible by IoT technology) solar-powered nodes that communicate via Wi-Fi with one another and personal devices, donated through organizations such as OLPC, creating an intranet. Each node covers an area approximately 600-800ft in every direction with 4MB/s access and 16GB of cached data, saving valuable bandwidth. Internal communication applications will be provided, minimizing expensive and slow global internet connections. Several solutions exist, but all have failed due to costs of over $200/node or the lack of networking capability.

To connect to the internet at large, a more powerful “server” may be added. This server hooks into the network like other nodes, but contains a cellular connection to connect to the global internet. Any device on the network will be able to access the web via the server’s connection, effectively spreading the cost of a single cellular data plan (which is too expensive for individuals in rural areas). The server also contains a continually-updated several-terabyte cache of educational data and programs, such as Wikipedia and Project Gutenberg. This data gives students and educators high-speed access to resources. Working in harmony, these two components foster economic growth and education, while significantly reducing the costs of adding future infrastructure.