Project

# Title Team Members TA Documents Sponsor
15 Automated Pour-over Coffee Machine with Imitation Learning
Jie Wang
Jingyuan Huang
Rucheng Ke
William Qiu
design_document3.pdf
final_paper2.pdf
final_paper3.pdf
photo1.jpg
proposal2.pdf
Said Mikki
# RFA for Automated Pour-over Coffee Machine with Imitation Learning

# Problem

The art of pour-over coffee brewing, famous for its complex flavor and high quality, is heavily dependent on the skills and experience of a barista. This craftsmanship leads to variability in coffee quality due to human inconsistency. Additionally, it is challenging for common coffee enthusiasts to replicate professional barista techniques at home or in non-specialized settings.

# Solution Overview

We propose the development of **an intelligent Automated Pour-over Coffee Machine leveraging imitation learning algorithms**. This machine will mimic the techniques of professional baristas, ensuring consistency and high-quality in every cup. The project will involve designing a mechanical structure integrated with sensors and developing sophisticated software algorithms.

# Solution Components

## Component 1: Mechanical Design

- **Purpose:** To create a machine that can physically replicates the movements and precision of a barista.
- **Features:** An adjustable nozzle for water flow control, a mechanical arm for simulating hand movements, and a stable structure to house the coffee dripper.
- **Challenges:** Ensuring precise movement and durability of moving parts, and integrating the mechanical system with electronic controls for seamless operation.
- **Expectation:** A workable, fixed coffee machine first, then upgrade it.

## Component 2: Sensors and Data Collection

- **Purpose:** To gather precise data on barista techniques for the learning algorithm.
- **Features:** High-precision sensors capturing data on water flow, angle, speed, and trajectory during the pour-over process.
- **Challenges:** Accurately capturing the nuanced movements of a professional barista and ensuring sensor durability under varying conditions.

## Component 3: Imitation Learning Algorithm

- **Purpose:** To analyze and learn from the collected data, enabling the machine to replicate these actions.
- **Features:** Advanced algorithms processing visual and sensory data to mimic barista techniques, this requires to duplicate the state-of-the-art research result from Robotics field.
- **Challenges:** Developing an algorithm capable of adapting to different styles and ensuring it can be updated as it learns from new data.

## Optional Components:

- **Multimodal Origin Information Pre-Processing:** To adjust settings based on different coffee beans and grind sizes.
- **User Interface Design:** An intuitive interface for user customization and selection of coffee preferences.
- **ChatGPT Enhanced Custom Coffee Setting**: To make the machine more intelligent and like a human barista, SOTA artificial intelligence like LLMs should be involved to make it more a sort of an agent than a regular machine.

# Criterion for Success

- **Mechanical Precision:** The machine must accurately control water flow and replicate barista movements.
- **Algorithm Effectiveness:** The machine should consistently brew coffee that matches or surpasses the quality of a professional barista.
- **User Experience:** The interface should be user-friendly, allowing customization without overwhelming the user.
- **Reliability and Durability:** The machine should operate consistently over time with minimal maintenance.
- **Taste Test Approval:** The coffee produced must be favorably reviewed in taste tests against traditional pour-over coffee.

Growing Degree Day Monitor

Featured Project

The purpose is to create an inexpensive growing degree day monitor that records temperature and computes growing degree days for a specific farming field during a growing season. This monitor will be placed near a farm field where it will monitor temperature conditions during the growing season. It will record both the ambient air and soil temperatures over the course of day. These temperatures will then be used to calculate the growing degree days. The cumulative number of degree days will then be displayed on either a seven-segment display or this can be downloaded to a computer. This monitor will be powered through a combination of both solar and battery power.