Project

# Title Team Members TA Documents Sponsor
15 Automated Pour-over Coffee Machine with Imitation Learning
Jie Wang
Jingyuan Huang
Rucheng Ke
William Qiu
design_document1.pdf
design_document2.pdf
design_document3.pdf
proposal1.pdf
proposal2.pdf
Said Mikki
# RFA for Automated Pour-over Coffee Machine with Imitation Learning

# Problem

The art of pour-over coffee brewing, famous for its complex flavor and high quality, is heavily dependent on the skills and experience of a barista. This craftsmanship leads to variability in coffee quality due to human inconsistency. Additionally, it is challenging for common coffee enthusiasts to replicate professional barista techniques at home or in non-specialized settings.

# Solution Overview

We propose the development of **an intelligent Automated Pour-over Coffee Machine leveraging imitation learning algorithms**. This machine will mimic the techniques of professional baristas, ensuring consistency and high-quality in every cup. The project will involve designing a mechanical structure integrated with sensors and developing sophisticated software algorithms.

# Solution Components

## Component 1: Mechanical Design

- **Purpose:** To create a machine that can physically replicates the movements and precision of a barista.
- **Features:** An adjustable nozzle for water flow control, a mechanical arm for simulating hand movements, and a stable structure to house the coffee dripper.
- **Challenges:** Ensuring precise movement and durability of moving parts, and integrating the mechanical system with electronic controls for seamless operation.
- **Expectation:** A workable, fixed coffee machine first, then upgrade it.

## Component 2: Sensors and Data Collection

- **Purpose:** To gather precise data on barista techniques for the learning algorithm.
- **Features:** High-precision sensors capturing data on water flow, angle, speed, and trajectory during the pour-over process.
- **Challenges:** Accurately capturing the nuanced movements of a professional barista and ensuring sensor durability under varying conditions.

## Component 3: Imitation Learning Algorithm

- **Purpose:** To analyze and learn from the collected data, enabling the machine to replicate these actions.
- **Features:** Advanced algorithms processing visual and sensory data to mimic barista techniques, this requires to duplicate the state-of-the-art research result from Robotics field.
- **Challenges:** Developing an algorithm capable of adapting to different styles and ensuring it can be updated as it learns from new data.

## Optional Components:

- **Multimodal Origin Information Pre-Processing:** To adjust settings based on different coffee beans and grind sizes.
- **User Interface Design:** An intuitive interface for user customization and selection of coffee preferences.
- **ChatGPT Enhanced Custom Coffee Setting**: To make the machine more intelligent and like a human barista, SOTA artificial intelligence like LLMs should be involved to make it more a sort of an agent than a regular machine.

# Criterion for Success

- **Mechanical Precision:** The machine must accurately control water flow and replicate barista movements.
- **Algorithm Effectiveness:** The machine should consistently brew coffee that matches or surpasses the quality of a professional barista.
- **User Experience:** The interface should be user-friendly, allowing customization without overwhelming the user.
- **Reliability and Durability:** The machine should operate consistently over time with minimal maintenance.
- **Taste Test Approval:** The coffee produced must be favorably reviewed in taste tests against traditional pour-over coffee.

BusPlan

Featured Project

# People

Scott Liu - sliu125

Connor Lake - crlake2

Aashish Kapur - askapur2

# Problem

Buses are scheduled inefficiently. Traditionally buses are scheduled in 10-30 minute intervals with no regard the the actual load of people at any given stop at a given time. This results in some buses being packed, and others empty.

# Solution Overview

Introducing the _BusPlan_: A network of smart detectors that actively survey the amount of people waiting at a bus stop to determine the ideal amount of buses at any given time and location.

To technically achieve this, the device will use a wifi chip to listen for probe requests from nearby wifi-devices (we assume to be closely correlated with the number of people). It will use a radio chip to mesh network with other nearby devices at other bus stops. For power the device will use a solar cell and Li-Ion battery.

With the existing mesh network, we also are considering hosting wifi at each deployed location. This might include media, advertisements, localized wifi (restricted to bus stops), weather forecasts, and much more.

# Solution Components

## Wifi Chip

- esp8266 to wake periodically and listen for wifi probe requests.

## Radio chip

- NRF24L01 chip to connect to nearby devices and send/receive data.

## Microcontroller

- Microcontroller (Atmel atmega328) to control the RF chip and the wifi chip. It also manages the caching and sending of data. After further research we may not need this microcontroller. We will attempt to use just the ens86606 chip and if we cannot successfully use the SPI interface, we will use the atmega as a middleman.

## Power Subsystem

- Solar panel that will convert solar power to electrical power

- Power regulator chip in charge of taking the power from the solar panel and charging a small battery with it

- Small Li-Ion battery to act as a buffer for shady moments and rainy days

## Software and Server

- Backend api to receive and store data in mongodb or mysql database

- Data visualization frontend

- Machine learning predictions (using LSTM model)

# Criteria for Success

- Successfully collect an accurate measurement of number of people at bus stops

- Use data to determine optimized bus deployment schedules.

- Use data to provide useful visualizations.

# Ethics and Safety

It is important to take into consideration the privacy aspect of users when collecting unique device tokens. We will make sure to follow the existing ethics guidelines established by IEEE and ACM.

There are several potential issues that might arise under very specific conditions: High temperature and harsh environment factors may make the Li-Ion batteries explode. Rainy or moist environments may lead to short-circuiting of the device.

We plan to address all these issues upon our project proposal.

# Competitors

https://www.accuware.com/products/locate-wifi-devices/

Accuware currently has a device that helps locate wifi devices. However our devices will be tailored for bus stops and the data will be formatted in a the most productive ways from the perspective of bus companies.