Project

# Title Team Members TA Documents Sponsor
24 Autonomous Transport Car
Size Feng
Xinyue Lu
Zhixin Chen
Zhuozheng He
design_document1.pdf
proposal1.pdf
Chushan Li
## Team Members

- Zhixin Chen(zhixinc3)
- Zhuozheng He(zh37)
- Size Feng(sizef2)
- Xinyue Lu(xinyue15)

## Problem

We have found that most warehouses still use manual management for inbound and outbound operations. This mode requires a high level of manual labor. Therefore, we decided to design a small autonomous vehicle for small warehouses that can automatically pick up pieces. The car will find the designated goods as needed, move them away, and place them in the designated area. This design can simultaneously avoid picking up goods by mistake and reduce the pressure and cost of warehouse management.

## Solution Overview

Our car will be tested and displayed in a simplified shelf environment designed by ourselves. The shelf environment will consist of several arranged shelves, guide lines on the ground, and several demonstration goods with RFID chips. The car will find the corresponding goods based on the information provided in the app, and use the mechanical structure to grab them and place them on the designated platform. If time permits, we will optimize for car movement speed, gripping speed, and the app platform human-computer interaction.

## Solution Components

### Mechanical Subsystem

- Car subsystem: The car will plan the optimal route based on the location of the goods and travel faster along the predetermined trajectory on the ground.

- Grab subsystem: After the car comes to a stop, the robotic arm can move to the designated position and grab the goods without touching other objects. Always hold onto the goods until they are transported to the designated pickup platform.

- Identify subsystem: Using RFID technology to identify the specific location of goods on the shelves. We will place RFID chips on the goods in advance.

- Interactive subsystem: Use the mobile app to give instructions to the car to retrieve the goods. The mobile app will receive feedback that the goods have been placed on the pickup platform or do not exist.

### Power Subsystem

The driving PCB board of the car, the driving circuit of the robotic arm, and the circuit recognized by the RFID chip are independently powered.

### Criterion for Success

- The car can travel along the trajectory at a fast speed to a designated position.
- It can correctly identify the goods that need to be grabbed
- The mechanical structure on the car can grab the goods on the shelves and transport them
- A simple app for issuing instructions and receiving feedback

High Noon Sheriff Robot

Yilue Pan, Shuting Shao, Yuan Xu, Youcheng Zhang

Featured Project

# MEMBERS:

- Yuan Xu [yuanxu4]

- Shuting Shao [shao27]

- Youcheng Zhang [yz64]

- Yilue Pan [Yilvep2]

# TITLE:

HIGH NOON SHERIFF ROBOT

PROBLEM:

Nowadays with the increasing number of armed attacks and shooting incidents. The update for public places needs to be put on the agenda. Obviously, we could not let police and security to do all the jobs since humans might neglect some small action of threat behind hundreds of people and could not respond quickly to the threat. A second of hesitation might cost an innocent life. Our team aims on making some changes to this situation since nothing is higher than saving lifes not only victims but also gunners. We find some ideas in the Old western movies when two cowboys are going to a high noon duel, the sheriff will pull out the revolver quicker than the other and try to warn him before everything is too late. If we can develop a robot that can detect potential threats and pull out weapons first in order to warn the criminal to abandon the crime or use non-lethal weapons to take him down if he continues to pull out his gun.

# SOLUTION OVERVIEW:

In order to achieve effective protection in a legal way, we have developed the idea of a security robot. The robot can quickly detect dangerous people and fire a gun equipped with non-lethal ammunition to stop dangerous events.

The robot should satisfy the following behavioral logic:

- When the dangerous person is acting normally and there is no indication of impending danger, the robot should remain in standby mode with its robot arm away from the gun.

- When the dangerous person is in a position ready to draw his gun or other indication of dangerous behavior, the robot is also in a drawn position and its arm is already clutching the gun.

- When the dangerous person touches his gun, The robot should immediately draw the gun, move the hammer and finish aiming and firing to control the dangerous person. This type of robot would need to include three subsystems: Detection system, Electrical Control system, and Mechanical system.

# SOLUTION COMPONENTS:

## [SUBSYSTEM #1: DETECTION SUBSYSTEM]

This subsystem consists of a camera and PC. We are going to use YOLO v5 to detect object, determine the position of human and the gun. Use DeepSORT to track the object, let the camera follow the opponent. Use SlowFast to detect opponent’s behavior.

## [SUBSYSTEM #2: ELECTRICAL CONTROL SYSTEM]

This subsystem consists of a STM32, two high speed motors, two gimbal motors, one motor for revolver action and position sensor. The STM32 serves as the controller for the motors. The high speed motor will be used to move the mechanical grab to grab the revolver and pull it out as fast as possible so that it will use the position sensor as the end stop point instead of PID control. The gimbal motors serve as Yaw and Pitch motion for the revolver to control the accuracy of the revolver so that it needs encoders to give the angle feedback.

## [SUBSYSTEM #3: MECHANICAL SYSTEM]

This subsystem consists of a three-degree-of-freedom robot arm and a clamping mechanism fixed to the end of the arm. The clamping mechanism is used to achieve the gripping of the gun, the moving of the hammer and the pulling of the trigger. The mechanical arm is used to lift and aim the gun.

# CRITERION FOR SUCCESS

- Move Fast. The robot must draw its gun and aim faster than the opponent;

- Warning First. If opponent’s hand moves close to the gun on his waist, the robot should draw the gun and aim it at the opponent without firing. If the opponent gives up drawing a gun and surrender, the robot should put its gun back in place. Otherwise, the robot will shoot at the opponent.

- Accurate shooting. Under the premise that the opponent may move, the robot must accurately shoot the opponent's torso.

# DISTRIBUTION OF WORK

- EE Student Shuting Shao: Responsible for object detection and object tracking.

- EE Student Yuan Xu: Responsible for behavior detection and video processing.

- EE Student Youcheng Zhang: Responsible for electrical control system.

- ME Student Yilue Pan: Responsible for the Mechanical system.