Project

# Title Team Members TA Documents Sponsor
42 eVTOL Drone
Chenyang Huang
Hongfan Liu
Xuan Chen
Zhengpu Ye
design_document1.pdf
final_paper1.docx
final_paper2.pdf
other1.pdf
other2.docx
proposal1.pdf
Jiahuan Cui
# Problem
Today, both the primary and secondary industries need to carry out technology-led industrial upgrading, in such a process, how to efficiently detect the work flow is a major problem. For example, in the fields of agricultural inspection, power line and infrastructure inspection, environmental protection and wildlife monitoring, an effective, high-speed and wide-ranging inspection method will increase the productivity and accuracy of related industries.

# Solution Overview
The solution we give is to develop an eVTOL drone that can meet a certain load bearing, set up corresponding communication modules and cameras for it, and transmit real-time data back to the data cloud we build on the server, so as to achieve a large range and long distance accurate detection.

# Solution Components
## Foam Board Body
The foam plate body provides lower weight, thus reducing energy consumption and ensuring adequate performance in terms of movement and acceleration, while it has good insulation, which can effectively reduce heat transfer and noise diffusion. During the engineering phase, its characteristics made the air frame easy to process and had good impact protection characteristics. At the same time, foam board is also a more economical and environmentally friendly approach.

## Power System
Internal micro controller for A/D conversion and initial signal processing ( Atmel atmega328
SIM Card Service )
Use SIM cards to provide identity authentication and data transmission in drone and cloud communications. SIM card technology allows drones to connect to a specific cellular network operator and use its network infrastructure to communicate remotely. In this way, the drone is not limited by distance, is able to perform long-distance missions, and can upload data to the cloud in real time. At the same time, it also ensures continuous connectivity between the drone and the cloud, and the drone can maintain a continuous network connection in the covered area. This allows for prolonged monitoring or data acquisition activities while enabling near real-time data analysis and decision support.

## Camera
Cameras rely on built-in image sensors, such as CMOS or CCD, to convert light into electronic signals. These sensors divide the screen into pixel points, each point can record color and brightness information, analog cameras will capture the image into analog signal output; The digital camera further converts the analog signal to A digital signal through an A/D (analog-to-digital) converter. By reducing its size through encoding and compression algorithms (such as H.264, H.265) to reduce the bandwidth requirements during transmission, the compressed video data can be transmitted through the SIM's cellular network and stored in the cloud.

# Criterion for Success
Our aircraft must be able to lift more than 2kg and maintain smooth horizontal and vertical flight, while our cloud needs to be stable and receive video information from drones flying on the road

Augmenting AR/VR with Smell

Baoyi He, Yingying Liu, Kaiyuan Tan, Xiao Wang

Featured Project

# TEAM MEMBERS

- **Kaiyuan Tan** (kt19)

- **Baoyi He** (baoyihe2)

- **Xiao Wang** (xiaow4)

- **Yingying Liu** (yl73)

# TITLE OF THE PROJECT

Augmenting AR/VR with Smell

# PROBLEM

Augmented Reality (AR) and Virtual Reality (VR) technologies are rapidly growing and becoming more prevalent in our daily lives. However, these technologies have not yet fully addressed the sense of smell, which is a critical aspect of human experience. The absence of scent in AR/VR experiences limits the immersive potential of these technologies, preventing users from experiencing a full sensory experience.

# SOLUTION OVERVIEW

The solution is to augment AR/VR experiences with smell, enabling users to experience a full sensory experience. This will be achieved by incorporating hardware and software components that can simulate various scents in real-time, in response to events in the AR/VR environment. The solution will consist of a scent-emitting device and software that can track and simulate scents based on the user's location and orientation in the AR/VR environment.

# SOLUTION COMPONENTS

The solution will consist of the following components:

- **Scent-emitting device**: This device will be designed to emit various scents in real-time. It will be portable and lightweight, making it easy for users to carry around during AR/VR experiences.

- **Scent simulation software**: This software will be designed to track the user's location and orientation in the AR/VR environment and simulate scents accordingly. The software will use various algorithms to determine the intensity and duration of scent emissions.

- **AR/VR hardware**: The solution will require AR/VR hardware to create the immersive environment. This hardware will include AR/VR headsets, controllers, and other peripherals necessary to interact with the AR/VR environment.

# CRITERION OF SUCCESS

The success of the project will be determined by the following criteria:

- **Immersive Experience**: The solution must provide an immersive AR/VR experience that incorporates smell as a key sensory input.

- **User Acceptance**: The solution must be accepted by users, who should be able to appreciate and enjoy the experience.

- **Technical Feasibility**: The solution must be technically feasible and reliable, with a low latency and high accuracy in scent simulation.

- **Scalability**: The solution should be scalable and adaptable to different AR/VR environments and hardware configurations.

- **Safety**: The solution must be safe for users and the environment, with proper ventilation and control mechanisms to prevent any harm or discomfort caused by excessive or inappropriate scent emissions.

# DISTRIBUTION OF WORK

- Model various scenerios based on AR/VR hardware. *(Tan)*

- Design algorithms which output the intensity and duration of scents based on the constructed scenerios. *(He & Liu)*

- Merge the scene with scents smoothly. *(He & Wang & Liu)*

- Design a protable scent-emitting device. *(Wang)*

- Test using real scents, invite people to experience and adjust based on feedback. *(All)*