Project

# Title Team Members TA Documents Sponsor
26 Teaching Heat to Student
Kaihua Hu
Tianyu Feng
Yongxin Xie
Ziang Liu
design_document1.pdf
proposal1.pdf
Wee-Liat Ong
# Team Member
- Kaihua Hu, kaihua2
- Tianyu Feng, tianyuf2
- Yongxin Xie, yjie3
- Ziang Liu, ziangl4

# Title
Teaching Heat to Student

# Problem
The need for an effective and engaging educational tool to introduce elementary and middle school students to fundamental concepts of heat transfer and thermal energy conversion.

# Solution Overview
We propose the design and manufacture of an integrated thermal experiment platform that provides a safe and hands-on environment for students. The platform will include visual demonstrations of heat conduction and convection, a coating for thermal radiation visualization, and an introduction to thermoelectricity.

# Solution Components
## Subsystem 1
Use a metal rod with one end heated and temperature sensors to detect every temperature on certain position, then visualize it on a computer. And we can use another hollow metal rod with fluid in it, detect and visualize the temperature in same way and show the influence of convection.

## Subsystem 2
Demonstrate the principle of electric heating material which could generate current when people put their hands on it and light up LEDs displaying 'ZJUI'.

## Subsystem 3
Design a coating material which could reflect certain wavelength of a light source and allow the electronicmagnetic wave from human to pass through. Demonstrating a scenario that people could feel cool with this material when received heat source radiation.

# Criterion for Success
- Engaging and safe educational experience.
- Clear understanding of heat transfer concepts by students.
- Successful demonstration of thermal radiation and thermoelectricity.

# Distribution of Work
- Kaihua Hu: Design and Manufacturing
- Tianyu Feng: Design and Manufacturing
- Yongxin Xie: Control and Electrical circuit
- Ziang Liu: Control and Electrical circuit

Bone Conduction Lock

Featured Project

A lock that is unlocked using vibrations conducted through the bones in the user’s hand. The user wears a wristband containing a haptic motor. The haptic motor generates a vibration signal that acts as the "key" to the lock. When the user touches their finger to the lock, the signal is transmitted through the user’s hand and is received at the lock. If the lock receives the correct "key", then it unlocks.