Project

# Title Team Members TA Documents Sponsor
30 Search and Identify
Ruidi Zhou
Shitian Yang
Yilai Liang
Yitao Cai
design_document2.pdf
design_document3.pdf
final_paper2.pdf
final_paper3.pdf
final_paper4.pdf
proposal1.pdf
proposal2.pdf
video1.mp4
Howard Yang
# Team members:
Yang, Shitian
sy39

Cai, Yitao
yitaoc3

Zhou, Ruidi
ruidi2

Liang, Yilai
yilail2

# Title:
Search and Identify

# Problem:
There is a noticeable gap in the availability of assistive applications tailored for homes, businesses, and individuals with mobility challenges. These groups lack efficient tools to swiftly locate everyday items, creating a significant inconvenience. This absence of specialized support not only hampers the day-to-day functionality within households and corporate environments but also poses a considerable barrier to independence for those with physical disabilities. Addressing this need with innovative solutions could dramatically improve the quality of life and operational efficiency by ensuring that vital items can be found quickly and easily, without unnecessary delay or reliance on others.

# Solution overview:
In solving the problem of accurately identifying specific items based on a user's immediate request, we are developing an innovative service-oriented robot capable of interactive processing. Our robot is equipped with a rotatable wireless camera mounted on a 360° steering engine which is controlled by a STM32F103c8t6 microcontroller under the drivetrain and power system, allowing it to visually scan its surroundings on receiving the user’s voice inquiry. When the software observes objects like cups, pencil cases, flowers, toys, and helmets, it processes the images to create an attention map. This map guides the robot to focus on and identify the specific object in question. Software component gives the object recognition feedbacks, the sensing system in the hardware component will output the 0/1 signal through signal control module and send it to the 360° steering engine. Such objects are easily achieved and can provide a suitable testing environment.

# Solution Component:
## Software Component:
1. Speech recognition: Transform audio instructions given by users into text tasks.
Prompt key item recognition: Simplify the text task prompt into a keyword or phrase.
2. Vision model: The vision model should take in the text prompt, and search for the object that matches the description best.
3. Algorithm: Our software parts will use a project on github called AbsVit as baseline, and we will remove the noise from the heatmap, and try to modify it to get the detail target object. The AbsVit is a algorithm and model for language-vision attention model.
## Hardware Component:
1. A drivetrain and power system: including a 360° steering engine, a wireless camera, a STM32F103c8t6 microcontroller, a 12V power source and a voltage converter. This system can rotate the camera to capture the pictures of its surroundings.
2. Control system: PC inputs the program into STM32F103c8t6 microcontroller, it will control the angles we want the camera to rotate each time and can control the time intervals between each rotation.
3. Storing system: including SD card which can store the pictures that the camera captures before, after software component finds that the object is found in the last picture, we can compare the pictures before and the picture which includes the object to verify the result.
4. Sensing system: including a signal control module. It can process the software component output into high-level or low-level signals and input 0/1 signals into drivetrain and power system to help it judge if it should operate or stop.

# Criterion for Success
1. Capable of identifying and navigating in indoor spaces, which have varying lighting situations including bright natural sunlight to dim artificial lights, and obstacles such as furniture and shelves.
2. The voice response system should also be easy to use, so it must respond timely and interact in natural language with the user (Users don’t need to learn the extra commands). The voice response system should also be easy to use, so it must respond timely and interact in natural language with the user.
3. When search request received from PC, our microcontroller of STM32F103c8t6 should send the correct impulse signal to control the 360° steering engine to automatically stop when the desired object is detected by the camera attached to it. The difference of the direction of the camera to the actual direction of the desired object should be within 3°.
4. Steering engine can rotate uniformly, smoothly, and continuously when no commands are given in a balanced and room temperature environment.

# Distribution of work
Yang, Shitian and Cai, Yitao:

Voice Recognition and Software Development:
Responsible for developing and testing the voice recognition system.

Yang, Shitian and Zhou, Ruidi:

Vision Module and Software Development:
Focus on developing and testing the vision module for object identification.

Zhou, Ruidi and Liang, Yilai:

Hardware and Microcontroller Development:
Responsible for developing and testing the hardware components, including the steering engine and microcontroller.

Cai, Yitao and Liang, Yilai:

Integration and Testing:
Oversee the integration of software and hardware components and conduct comprehensive testing of the entire system.

Robot for Gym Exercise Guidance

Zifei Han, Dalei Jiang, Kunle Li, Chang Liu

Featured Project

TEAM MEMBERS

Dalei Jiang (daleij2)

Zifei Han (zifeih2)

Chang Liu (changl12)

Kunle Li (kunleli2)

PROJECT TITLE

Robot for Gym Exercise Guidance

PROBLEM

In modern society, daily fitness is a necessary life choice for healthy people. When it comes to fitness, the standard of movement is very important. However, hiring a coach exclusively for instruction is sometimes not a convenient and economical option. We think robots are perfectly capable of determining whether a person's movements are in place. To this end, we need to propose a scheme to design a robot that can walk behind people and use certain technologies to identify human movements when people are moving, compare with the existing action models, and give an evaluation.

SOLUTION OVERVIEW

Our solution is to design a robot that included a chassis that drove the motion on the bottom and a computer operating system and camera on the top. With ultrasonic radar and cameras, the robot can follow the target. When the "motion assessment" module starts to operate, the camera will capture video information and begin motion analysis at the same time. The analysis of human motion will be completed as soon as possible and the standard evaluation of motion will be given. At the same time, we will design some multimedia files, such as sound and video, to interact with the user.

SOLUTION COMPONENTS

Based on the introduction above, several systems need to be implemented to realize the solution.

SUBSYSTEM 1: BOTTOM MOBILE PLATFORM PROGRAMMING

We plan to take use of the EAI SMART robot platform as the base movement platform of the robot. We will do the programming based on the ROS system to realize automatic navigation, path planning, and object tracking.

SUBSYSTEM 2: SKELETAL BINDING AND MOVEMENT ANALYSIS OF THE HUMAN BODY

The most important part of this program is that we will use the Mask R-CNN to do the skeletal binding to determine the human's movement. We will try to train an efficient model to help us realize fast analysis.

SUBSYSTEM 3: MAN-MACHINE INTERACTIVE SYSTEM

As a user-oriented product, we need to design a friendly human-computer interface to realize the free conversion of functions.

SUBSYSTEM 4: MOVEMENT STANDARD ALGORITHM

We need to devise an algorithm to assess the deviation between the gymnast's movements and the standard. This algorithm is very important for the final product performance feedback.

CRITERION FOR SUCCESS

The robot can self-navigate to find people in the gym.

The robot can monitor the person doing exercise and extract human poses.

The robot can check whether the person is doing correctly in the exercise.

DISTRIBUTION OF WORK

Dalei Jiang: Skeletal binding and movement analysis of the human body

Zifei Han: Bottom mobile platform programming

Chang Liu: Man-machine interactive system building

Kunle Li: Movement standard algorithm designing