Project

# Title Team Members TA Documents Sponsor
1 3D Scanner
Chenchen Yu
Jiayi Luo
Peiyuan Liu
Yifei Song
Xinyi Xu design_document1.pdf
final_paper1.pdf
proposal1.pdf
Pavel Loskot
# Team Members

Yifei Song (yifeis7)

Peiyuan Liu (peiyuan6)

Jiayi Luo (jiayi13)

Chenchen Yu (cy32)

# 3D Scanner

# Problem

Our problem is how to design an algorithm that uses a mobile phone to take multiple angle photos and generate 3D models from multiple 2D images taken at various positions. At the same time, we will design a mechanical rotating device that allows the mobile phone to rotate 360 degrees and move up and down on the bracket.

# Solution Overview

Our solution for reconstructing a 3D topology of an object is to build a mechanical rotating device and develop an image processing algorithm. The mechanical rotating device contains a reliable holder that can steadily hold a phone of a regular size, and an electrical motor, which is fixed in the center of the whole system and can rotate the holder 360 degrees at a constant angular velocity.

# Solution Components

## Image processing algorithms

- This algorithm should be capable of performing feature detection which is essential for image processing. It should be able to accurately identify and extract relevant features of an object from multiple 2D images, including edges, corners, and key points.

- This algorithm should be designed to minimize the memory requirement and energy consumption, because mobile phones have limited memory and battery.

## Mechanical rotating system

Phone holder that can adjust its size and orientation to hold a phone steadily

Base of the holder with wheels that allows the holder to move smoothly on a surface

Electrical motor for rotating the holder at a constant angular velocity

Central platform to place the object

The remote-control device can be used to control the position of the central platform. Different types of motors and mechanisms can be used for up and down, such as the stepper motors, servo motors, DC motors, and AC motors.

# Criterion for Success

- Accuracy: The app should be able to produce a 3D model that is as accurate as possible to the real object, with minimal distortion, errors or noise.

- Speed: The app should be able to capture and process the 3D data quickly, without requiring too much time or processing power from the user's device.

- Output quality: The app should be able to produce high-quality 3D models that can be easily exported and used in other software applications or workflows.

- Compatibility: Any regular phone can be placed and fixed on the phone holder with a certain angle and does not come loose

- Flexibility: The holder with a phone must be able to rotate 360 degrees smoothly without violent tremble at a constant angular velocity

# Distribution of Work

Yifei Song

Design a mobile app and deploy a modeling algorithm to it that enables image acquisition and 3D modeling output on mobile devices.

Peiyuan Liu:

Design an algorithm for modeling 3D models from multiple view 2D images.

Jiayi Luo:

Design the remote-control device. Using the electrical motors to control the central platform of the mechanical rotating system.

Chenchen Yu:

Design the mechanical part. Build, test and improve the mechanical rotating system to make sure the whole device works together.

Miniaturized Breath Sensors

Rui Cai, Yiyang Chen, Qiaozhi Huang, Yingzhuo Wang

Featured Project

## Group Member:

- Yiyang Chen[yiyangc5];

- Rui Cai[ruic2] ;

- Yinzhuo Wang[yw28];

- Qiaozhi Huang[qiaozhi2]

## Problem

Flow monitoring is crucial in many applications. We want to build a miniaturized breath sensor system that can monitor asthma.

## Solution Overview

In this wearable respiratory monitoring device, a new fluid measurement device, similar in principle to a traditional hotline, will be used to collect real-time data on a person's breathing rate. In contrast to the traditional hotline, materials such as graphene and carbon nanotubes are used as probes which is much more robust and have lower TCR(temperature coefficient of resistance). This material--graphene fiber (GF) will be welded into Wheatstone bridge and the voltage output of GF will demonstrate the velocity of air flow by controlling the temperature of the GF. Then, we will use filter to eliminate noise of the signal and do Fourier Transform to demonstrate the frequency of respiration. After that, this signal can be sent to smartphone. With previous training data online, we can analyze the signal of respiration and conclude the probability of asthma. We plan to use a mobile app to show users breathing data, summarize the data and make recommendations. We will use Bluetooth for data transmission.

## Solution Components

### Flow Sensor System

The resistance of a specific material changes at different temperatures, and the flow sensor system's control circuit measures the change in resistance to achieve constant temperature control of the sensor probe. In the thermostatically controlled fluid sensor subsystem, the heat carried by the fluid at different speeds through the sensor probe is the same as the heat provided by the compensation circuit, so that the fluid flow rate can be accurately measured. Graphene and carbon nanotubes are widely used in these sensor probes, and sensor probes using pencil and paper have recently been proposed as a new type of sensor probe. The processing of sensor probes is challenging and there are advantages and disadvantages to various methods, including soldering and metal clamping, and we are trying to design a small, low-cost and robust sensor probe.

### Circuit

The circuit of our design consists of three sections: Wheatstone Bridge, Amplifier, and Feedback control. We need to adjust the resistance of the Wheatstone Bridge to construct and balance a working space for GF sensor. As it states in previous, the flow would change the GF material’s resistance, thus create a voltage difference on both sides of the Wheatstone Bride. This difference will be amplified by the operational amplifier, and the voltage regulator will change the excitation voltage on the Wheatstone Bridge in order to keep the temperature of GF stable. The difficulty of our design come from the feedback control design. One possible way is to use transistors. In addition, if we want to eliminate the environmental temperature effect, specific temperature compensation measure should be implemented, such as add a temperature sensor in another Wheatstone Bridge. The circuit should keep the GF temperature stable and output the voltage change, this output signal will transfer to next section and be processed and analysed.

### Signal Processing and Analysis

First, we must use filter to eliminate noise of signal. As we all know, the high frequency noise can have a negative influence on the signal, which does harm to our analysis of asthma. Therefore, we must do FFT on signal we get from circuit and use high frequency filter to eliminate certain noise. Second, to calculate the probability of asthma, we must collect training data of respiration online. These data can be used to do machine learning. With those training data, the signal can be analysed easily.

### Result

Visualization Bluetooth Low Energy (BLE) features Low power consumption and faster transmission speeds. Therefore, we choose BLE to transmit data to mobile phone on this wearable respiratory monitoring device that requires long battery life and only a small amount of data transfer. We're also going to keep the interface simple and add analysis function to the app.

## Criterion of success

- Wearable and Miniaturized In the current study, wearability and miniaturization directly determine the industrialization potential of this new type of sensor. The portability of the product will help to achieve 24/7 patient health monitoring. Therefore, the development of wearable and miniaturized health monitors is considered as one of the criteria to measure the success of the product.

- Comfortable and Flexible Flexible sensors that conform to human science will significantly improve the comfort of wearing the product and determine the user's willingness to wear it. Flexibility and comfort are one of the goals of the product.

- Environment Friendly Environmental protection is becoming an increasingly important issue to be addressed today. The development of environment-friendly sensors is the goal of this research. Conventional biosensors will inevitably use environmentally hazardous materials such as plastic. this study will use degradable materials, such as paper, instead of plastic for product development.

- Low Cost Low-cost respiratory health monitors facilitate product penetration and daily use.

- Reliable and Stable As a medical product, the reliability of the product determines the safety of the life of the target object. A highly reliable and high-performance respiratory monitoring device can effectively guarantee the occurrence of accidents.

## Distribution of Work

Yiyang Chen (ME), Rui Cai (EE) and Qiaozhi Huang (ME) will be responsible for the construction of the fluid sensors, the design of the wearable device, the design and debugging of the circuitry, which are closely linked and we agree that there is no need for an overly clear distribution of work, Rui Cai will lead the development and fabrication of the circuitry. Yingzhuo Wang (ME) will be responsible for the development of the wireless Bluetooth data transmission technology, the visualization of the monitoring results and the implementation of the interactive functions.