Project

# Title Team Members TA Documents Sponsor
1 3D Scanner
Chenchen Yu
Jiayi Luo
Peiyuan Liu
Yifei Song
Xinyi Xu design_document1.pdf
final_paper1.pdf
proposal1.pdf
Pavel Loskot
# Team Members

Yifei Song (yifeis7)

Peiyuan Liu (peiyuan6)

Jiayi Luo (jiayi13)

Chenchen Yu (cy32)

# 3D Scanner

# Problem

Our problem is how to design an algorithm that uses a mobile phone to take multiple angle photos and generate 3D models from multiple 2D images taken at various positions. At the same time, we will design a mechanical rotating device that allows the mobile phone to rotate 360 degrees and move up and down on the bracket.

# Solution Overview

Our solution for reconstructing a 3D topology of an object is to build a mechanical rotating device and develop an image processing algorithm. The mechanical rotating device contains a reliable holder that can steadily hold a phone of a regular size, and an electrical motor, which is fixed in the center of the whole system and can rotate the holder 360 degrees at a constant angular velocity.

# Solution Components

## Image processing algorithms

- This algorithm should be capable of performing feature detection which is essential for image processing. It should be able to accurately identify and extract relevant features of an object from multiple 2D images, including edges, corners, and key points.

- This algorithm should be designed to minimize the memory requirement and energy consumption, because mobile phones have limited memory and battery.

## Mechanical rotating system

Phone holder that can adjust its size and orientation to hold a phone steadily

Base of the holder with wheels that allows the holder to move smoothly on a surface

Electrical motor for rotating the holder at a constant angular velocity

Central platform to place the object

The remote-control device can be used to control the position of the central platform. Different types of motors and mechanisms can be used for up and down, such as the stepper motors, servo motors, DC motors, and AC motors.

# Criterion for Success

- Accuracy: The app should be able to produce a 3D model that is as accurate as possible to the real object, with minimal distortion, errors or noise.

- Speed: The app should be able to capture and process the 3D data quickly, without requiring too much time or processing power from the user's device.

- Output quality: The app should be able to produce high-quality 3D models that can be easily exported and used in other software applications or workflows.

- Compatibility: Any regular phone can be placed and fixed on the phone holder with a certain angle and does not come loose

- Flexibility: The holder with a phone must be able to rotate 360 degrees smoothly without violent tremble at a constant angular velocity

# Distribution of Work

Yifei Song

Design a mobile app and deploy a modeling algorithm to it that enables image acquisition and 3D modeling output on mobile devices.

Peiyuan Liu:

Design an algorithm for modeling 3D models from multiple view 2D images.

Jiayi Luo:

Design the remote-control device. Using the electrical motors to control the central platform of the mechanical rotating system.

Chenchen Yu:

Design the mechanical part. Build, test and improve the mechanical rotating system to make sure the whole device works together.

Drum Tutor Lite

Featured Project

Team: Yuanheng Yan, Zhen Qin, Xun Yu

Vision: Rhythm games such as guitar hero are much easier than playing the actual drums. We want to make a drum tutor that makes playing drums as easy as guitar hero. The player is not required to read a sheet music.

Description: We will build a drum add-on that will tutor people how to play the drums. We will make a panel for visual queue of the drum and beats in a form similar to guitar hero game. The panel can be a N*10 (N varying with the drum kit) led bar array. Each horizontal bar will be a beat and each horizontal line above the bottom line will represent the upcoming beats.

There will be sensors on each drum that will fire when the drum heads is hit. The drums will be affixed with ring of light that provides the timing and accuracy of the player according to the sensors.

Of course with a flip of a switch, the drum could be a simple light up drum: when the player hits the drum, that particular drum will light up giving cool effects.

The system will be on a microprocessor. Or for more versatile uses, it could be connected to the computer. And a app will be written for the tutor.