Course Overview :: ECE 445 - Senior Design Laboratory

Course Overview

Welcome to ECE 445 / ME 470 Senior Design ZJUI Spring 2024!

Welcome to the class! If you've looked at the course Calendar, you've probably already noticed that this class is quite different from most other classes in the department. The class only meets as a whole for the first four weeks of the semester. During these lectures, you will meet the Course Staff, learn about specific requirements, resources, and project choices for the course, and have a chance to meet other students. These are some of the most important weeks for the class since the decisions you make during this time will determine what you'll get out of this class and, in many ways, how much you'll enjoy it.

In this course, you will form teams and propose projects that solve an engineering problem in a unique way. The projects generally involve a device that you will design, build, and demonstrate. We are excited to see what projects you create this semester! In the midst of an ever-changing learning environment, we want to encourage you to think, create, design, and build exemplary projects. We want to ensure that your experience in 445 demonstrates your potential as an engineer graduating from the University of Illinois.

This course is taught hybrid for ME and ECE students, and some projects are mentored by ZJUI faculty. Here are a few items that you will need to consider as we enter this semester.

Expectations and Requirements

We have high expectations for students participating in ECE/ME Senior Design. You are soon to be an alumnus of one of the top engineering schools in the world. Our alumni hold themselves to high technical and professional standards of conduct. In general, projects are expected to be safe, ethical, and have a level of design complexity commensurate with the rigour of the ECE/ME Illinois curriculum. Requirements for specific assignments due throughout the semester can be found by looking through the Grading Scheme for the course. Please read through this documentation well before each assignment is due. Specific due dates can be found on the course Calendar.

Below are a few words of wisdom to keep in mind throughout the semester to increase your enjoyment and success in the course:

 

A Wearable Device Outputting Scene Text For Blind People

Hangtao Jin, Youchuan Liu, Xiaomeng Yang, Changyu Zhu

A Wearable Device Outputting Scene Text For Blind People

Featured Project

# Revised

We discussed it with our mentor Prof. Gaoang Wang, and got a solution to solve the problem

## TEAM MEMBERS (NETID)

Xiaomeng Yang (xy20), Youchuan Liu (yl38), Changyu Zhu (changyu4), Hangtao Jin (hangtao2)

## INSTRUCTOR

Prof. Gaoang Wang

## LINK

This idea was pitched on Web Board by Xiaomeng Yang.

https://courses.grainger.illinois.edu/ece445zjui/pace/view-topic.asp?id=64684

## PROBLEM DESCRIPTION

Nowadays, there are about 12 million visually disabled people in China. However, it is hard for us to see blind people in the street. One reason is that when the blind people are going to the location they are not familiar with, it is difficult for blind people to figure out where they are. When blind people travel, they are usually equipped with navigation equipment, but the accuracy of navigation equipment is not enough, and it is difficult for blind people to find the accurate position of the destination when they arrive near the destination. Therefore, we'd like to make a device that can figure out the scene text information around the destination for blind people to reach the direct place.

## SOLUTION OVERVIEW

We'd like to make a device with a micro camera and an earphone. By clicking a button, the camera will take a picture and send it to a remote server to process through a communication subsystem. After that, text messages will be extracted and recognized from the pictures using neural network, and be transferred to voice messages by Google text-to-speech API. The speech messages will then be sent back through the earphones to the users. The device can be attached to glasses that blind people wear.

The blind use the navigation equipment, which can tell them the location and direction of their destination, but the blind still need the detail direction of the destination. And our wearable device can help solve this problem. The camera is fixed to the head, just like our eyes. So when the blind person turns his head, the camera can capture the text of the scene in different directions. Our scenario is to identify the name of the store on the side of the street. These store signs are generally not tall, about two stories high. Blind people can look up and down to let the camera capture the whole store. Therefore, no matter where the store name is, it can be recognized.

For example, if a blind person aims to go to a book store, the navigation app will tell him that he arrives the store and it is on his right when he are near the destination. However, there are several stores on his right. Then the blind person can face to the right and take a photo of that direction, and figure out whether the store is there. If not, he can turn his head a little bit and take another photo of the new direction.

![figure1](https://courses.grainger.illinois.edu/ece445zjui/pace/getfile/18612)

![figure2](https://courses.grainger.illinois.edu/ece445zjui/pace/getfile/18614)

## SOLUTION COMPONENTS

### Interactive Subsystem

The interactive subsystem interacts with the blind and the environment.

- 3-D printed frame that can be attached to the glasses through a snap-fit structure, which could holds all the accessories in place

- Micro camera that can take pictures

- Earphone that can output the speech

### Communication Subsystem

The communication subsystem is used to connect the interactive subsystem with the software processing subsystem.

- Raspberry Pi(RPI) can get the images taken by the camera and send them to the remote server through WiFi module. After processing in the remote server, RPI can receive the speech information(.mp3 file).

### Software Processing Subsystem

The software processing subsystem processes the images and output speech, which including two subparts, text recognition part and text-to-speech part.

- A OCR recognition neural network which is able to extract and recognize the Chinese text from the environmental images transported by the communication system.

- Google text-to-speech API is used to transfer the text we get to speech.

## CRITERION FOR SUCCESS

- Use neural network to recognize the Chinese scene text successfully.

- Use Google text-to-speech API to transfer the recognized text to speech.

- The device can transport the environment pictures or video to server and receive the speech information correctly.

- Blind people could use the speech information locate their position.