Project

# Title Team Members TA Documents Sponsor
38 VEHICULAR EDGE COMPUTING SYSTEM
Mingjun Wei
Shaohua Sun
Ye Yang
Yinjie Ruan
design_document1.pdf
final_paper2.pdf
final_paper1.docx
proposal1.pdf
proposal2.pdf
Meng Zhang
# TEAM MEMBERS
- Shaohua Sun (shaohua6)
- Ye Yang (yeyang3)
- Mingjun Wei (mingjun9)
- Yinjie Ruan (yinjier2)

# VEHICULAR EDGE COMPUTING SYSTEM

# PROBLEM:

As more and more research has been conducted on mobile edge computing, we propose that a mobile edge computing server in application can be deployed on-board a vehicle. But when performing tasks, the server will heat up very quickly and traditionally, the air-conditioner is needed. We try to avoid the use of air-conditioner, but put the server exposed to the air.

# SOLUTION OVERVIEW:

The vehicular mobile edge computing server is designed with a general server installed on-board vehicle. To make full use of the server, it will be accessed to the Internet and realize functionalities according to the existing theory of edge computing. To solve the problem of heating when performing intensive computational tasks, we utilize the wind to cool it down while designing waterproof to protect the server from rain.

# SOLUTION COMPONENTS:

## Modules on Waterproof and Shelter:

- The waterproof: To protect the server from rain or snow.

- The shelter: To carry the server with high stability.

- The airpath on the shelter: To utilize the wind to cool down the server effectively, even in relatively low car speed.

## Server Modules:

- The wireless communication access to the Internet.

- The server can perform relatively complex tasks like deep learning effectively.


# CRITERION FOR SUCCESS:

- Functionality: The mobile edge computing server can do computation tasks in the complexity level of deep learning, and access to the Internet to send or receive data. The waterproof and shelter should be stable and firm to fasten the server and protect it from rain. Also it can dissipate heat effectively.

- User experience: The user can get real-time access via the Internet and enjoy plentiful services like online video, etc.

- Durability and stability: The server needs to maintain a stable access to the Internet, and it can be used in rainy environment.

# DISTRIBUTION OF WORK:

- ME STUDENT SHAOHUA SUN:

Design how to set a waterproof.

- ME STUDENT YE YANG:

Design how the shelter can be breathable to cool down the server.

- EE STUDENT MINGJUN WEI:

Model a mobile edge computing server being able to take complex computing tasks.

- EE STUDENT YINJIE RUAN:

Make the edge computing server connected to the Internet.

Miniaturized Breath Sensors

Rui Cai, Yiyang Chen, Qiaozhi Huang, Yingzhuo Wang

Featured Project

## Group Member:

- Yiyang Chen[yiyangc5];

- Rui Cai[ruic2] ;

- Yinzhuo Wang[yw28];

- Qiaozhi Huang[qiaozhi2]

## Problem

Flow monitoring is crucial in many applications. We want to build a miniaturized breath sensor system that can monitor asthma.

## Solution Overview

In this wearable respiratory monitoring device, a new fluid measurement device, similar in principle to a traditional hotline, will be used to collect real-time data on a person's breathing rate. In contrast to the traditional hotline, materials such as graphene and carbon nanotubes are used as probes which is much more robust and have lower TCR(temperature coefficient of resistance). This material--graphene fiber (GF) will be welded into Wheatstone bridge and the voltage output of GF will demonstrate the velocity of air flow by controlling the temperature of the GF. Then, we will use filter to eliminate noise of the signal and do Fourier Transform to demonstrate the frequency of respiration. After that, this signal can be sent to smartphone. With previous training data online, we can analyze the signal of respiration and conclude the probability of asthma. We plan to use a mobile app to show users breathing data, summarize the data and make recommendations. We will use Bluetooth for data transmission.

## Solution Components

### Flow Sensor System

The resistance of a specific material changes at different temperatures, and the flow sensor system's control circuit measures the change in resistance to achieve constant temperature control of the sensor probe. In the thermostatically controlled fluid sensor subsystem, the heat carried by the fluid at different speeds through the sensor probe is the same as the heat provided by the compensation circuit, so that the fluid flow rate can be accurately measured. Graphene and carbon nanotubes are widely used in these sensor probes, and sensor probes using pencil and paper have recently been proposed as a new type of sensor probe. The processing of sensor probes is challenging and there are advantages and disadvantages to various methods, including soldering and metal clamping, and we are trying to design a small, low-cost and robust sensor probe.

### Circuit

The circuit of our design consists of three sections: Wheatstone Bridge, Amplifier, and Feedback control. We need to adjust the resistance of the Wheatstone Bridge to construct and balance a working space for GF sensor. As it states in previous, the flow would change the GF material’s resistance, thus create a voltage difference on both sides of the Wheatstone Bride. This difference will be amplified by the operational amplifier, and the voltage regulator will change the excitation voltage on the Wheatstone Bridge in order to keep the temperature of GF stable. The difficulty of our design come from the feedback control design. One possible way is to use transistors. In addition, if we want to eliminate the environmental temperature effect, specific temperature compensation measure should be implemented, such as add a temperature sensor in another Wheatstone Bridge. The circuit should keep the GF temperature stable and output the voltage change, this output signal will transfer to next section and be processed and analysed.

### Signal Processing and Analysis

First, we must use filter to eliminate noise of signal. As we all know, the high frequency noise can have a negative influence on the signal, which does harm to our analysis of asthma. Therefore, we must do FFT on signal we get from circuit and use high frequency filter to eliminate certain noise. Second, to calculate the probability of asthma, we must collect training data of respiration online. These data can be used to do machine learning. With those training data, the signal can be analysed easily.

### Result

Visualization Bluetooth Low Energy (BLE) features Low power consumption and faster transmission speeds. Therefore, we choose BLE to transmit data to mobile phone on this wearable respiratory monitoring device that requires long battery life and only a small amount of data transfer. We're also going to keep the interface simple and add analysis function to the app.

## Criterion of success

- Wearable and Miniaturized In the current study, wearability and miniaturization directly determine the industrialization potential of this new type of sensor. The portability of the product will help to achieve 24/7 patient health monitoring. Therefore, the development of wearable and miniaturized health monitors is considered as one of the criteria to measure the success of the product.

- Comfortable and Flexible Flexible sensors that conform to human science will significantly improve the comfort of wearing the product and determine the user's willingness to wear it. Flexibility and comfort are one of the goals of the product.

- Environment Friendly Environmental protection is becoming an increasingly important issue to be addressed today. The development of environment-friendly sensors is the goal of this research. Conventional biosensors will inevitably use environmentally hazardous materials such as plastic. this study will use degradable materials, such as paper, instead of plastic for product development.

- Low Cost Low-cost respiratory health monitors facilitate product penetration and daily use.

- Reliable and Stable As a medical product, the reliability of the product determines the safety of the life of the target object. A highly reliable and high-performance respiratory monitoring device can effectively guarantee the occurrence of accidents.

## Distribution of Work

Yiyang Chen (ME), Rui Cai (EE) and Qiaozhi Huang (ME) will be responsible for the construction of the fluid sensors, the design of the wearable device, the design and debugging of the circuitry, which are closely linked and we agree that there is no need for an overly clear distribution of work, Rui Cai will lead the development and fabrication of the circuitry. Yingzhuo Wang (ME) will be responsible for the development of the wireless Bluetooth data transmission technology, the visualization of the monitoring results and the implementation of the interactive functions.