Project

# Title Team Members TA Documents Sponsor
19 Smart Power Routing with MPPT-Based Wind Turbine
Rong Li
Tiantian Zhong
Zhekai Zheng
design_document3.pdf
final_paper3.pdf
proposal2.pdf
Lin Qiu
## Problem Statement

Traditional wind energy systems often face challenges related to suboptimal power extraction, limited adaptability, and inadequate integration with smart grids. Conventional wind power systems usually requires a giant turbine which produces power for the grid. Yet a new trend arises in recent years where a small wind power system is installed on a fisher or on the roof of a villa. Such scenario requires a stable power converter and router to ensure stable power supply, which not only allows the user to use cheap and clean wind energy, but is also able to switch to battery or mains when wind force is too light to drive the turbine or when the turbine is in fault.

## Solution Overview and Components

The proposed solution involves the development and implementation of the system integrated with a MPPT-based wind turbine. This comprehensive solution aims to address the inefficiencies and limitations of traditional wind energy systems by incorporating advanced technologies for optimal power extraction, intelligent management, and seamless integration with smart grids.

Some key components of the solution are as follows:

1. **Wind turbines.** The project plans to use a three-phase asynchronous motor to build a down-scaled wind turbine. The turbine should produce no more than 30 V AC output under normal weather condition with wind speed less than 8 m/s (force 4). (Similar turbine with suitable size (diameter = 1.1 m) for the project appears on Taobao, which has rated output voltage 12 V, maximum power ranges from several hundred watts to kilowatts, and can work safely within wind speed 35 m/s (wind force 6). Link to the turbine)
2. **MMC-Based AC-DC converter.** This unit is expected to provide stable DC output for users. Its controller consists of MCUs and voltage sensors. The converter should be designed using MMC technology and should be able to implement Maximum Power Point Tracking (MPPT).
3. **User interface.** This unit displays real-time current, voltage and power of the system.
4. **Simulated mains.** This is a low-voltage (<30 V) power supply that simulates the mains. It is apparently down-scaled for safety considerations.
5. **Routing system.** This unit should be able to decide which power should be connected to the load, the turbine or the simulated mains.
6. **Safety.** An emergency stop button should be connected to the circuit in order to cut off all power sources and stop the turbine whenever an emergency happens. Control units should be able to cut the power when the system is overload or in fault status. The solution should fit in relevant national or industrial standards.

## Criterion for Success

The design will be tested using various common loads that is used at home. The following criterion should be satisfied to indicate a successful design:

1. **Safety is the first priority**. All safety measures should be working properly.
2. The controller should be able to keep the converter working at the maximum power point.
3. The MMC converter should be able to provide stable output with current and voltage ripple less than $\pm10\%$​​.
4. The controller should switch between power supplies within a short period of time (specific time limit needs to be determined after further research on relevant national standards and other technical documents).

## Distribution of Work

The project can be divided into three modules – the power system, the control system, and the mechanical system.

- The power system deals with everything related to power transmission, include the design of generators and converters.
- The control system provides control signals to the converter, properly routes power to the load, and provide safety measures.
- The mechanical design should put every hardware components organized to form a ready-to-use product, and print necessary instructions and warnings at proper places.

The following is the detailed task division:

- Power system and circuit design: Rong Li & Zhekai Zheng
- Control system and circuit design: Tiantian Zhong & Rong Li
- Mechanical design and manufacturing: Zhekai Zheng
- Purchasing, finance, and other miscellaneous affairs: Tiantian Zhong

A Wearable Device Outputting Scene Text For Blind People

Hangtao Jin, Youchuan Liu, Xiaomeng Yang, Changyu Zhu

A Wearable Device Outputting Scene Text For Blind People

Featured Project

# Revised

We discussed it with our mentor Prof. Gaoang Wang, and got a solution to solve the problem

## TEAM MEMBERS (NETID)

Xiaomeng Yang (xy20), Youchuan Liu (yl38), Changyu Zhu (changyu4), Hangtao Jin (hangtao2)

## INSTRUCTOR

Prof. Gaoang Wang

## LINK

This idea was pitched on Web Board by Xiaomeng Yang.

https://courses.grainger.illinois.edu/ece445zjui/pace/view-topic.asp?id=64684

## PROBLEM DESCRIPTION

Nowadays, there are about 12 million visually disabled people in China. However, it is hard for us to see blind people in the street. One reason is that when the blind people are going to the location they are not familiar with, it is difficult for blind people to figure out where they are. When blind people travel, they are usually equipped with navigation equipment, but the accuracy of navigation equipment is not enough, and it is difficult for blind people to find the accurate position of the destination when they arrive near the destination. Therefore, we'd like to make a device that can figure out the scene text information around the destination for blind people to reach the direct place.

## SOLUTION OVERVIEW

We'd like to make a device with a micro camera and an earphone. By clicking a button, the camera will take a picture and send it to a remote server to process through a communication subsystem. After that, text messages will be extracted and recognized from the pictures using neural network, and be transferred to voice messages by Google text-to-speech API. The speech messages will then be sent back through the earphones to the users. The device can be attached to glasses that blind people wear.

The blind use the navigation equipment, which can tell them the location and direction of their destination, but the blind still need the detail direction of the destination. And our wearable device can help solve this problem. The camera is fixed to the head, just like our eyes. So when the blind person turns his head, the camera can capture the text of the scene in different directions. Our scenario is to identify the name of the store on the side of the street. These store signs are generally not tall, about two stories high. Blind people can look up and down to let the camera capture the whole store. Therefore, no matter where the store name is, it can be recognized.

For example, if a blind person aims to go to a book store, the navigation app will tell him that he arrives the store and it is on his right when he are near the destination. However, there are several stores on his right. Then the blind person can face to the right and take a photo of that direction, and figure out whether the store is there. If not, he can turn his head a little bit and take another photo of the new direction.

![figure1](https://courses.grainger.illinois.edu/ece445zjui/pace/getfile/18612)

![figure2](https://courses.grainger.illinois.edu/ece445zjui/pace/getfile/18614)

## SOLUTION COMPONENTS

### Interactive Subsystem

The interactive subsystem interacts with the blind and the environment.

- 3-D printed frame that can be attached to the glasses through a snap-fit structure, which could holds all the accessories in place

- Micro camera that can take pictures

- Earphone that can output the speech

### Communication Subsystem

The communication subsystem is used to connect the interactive subsystem with the software processing subsystem.

- Raspberry Pi(RPI) can get the images taken by the camera and send them to the remote server through WiFi module. After processing in the remote server, RPI can receive the speech information(.mp3 file).

### Software Processing Subsystem

The software processing subsystem processes the images and output speech, which including two subparts, text recognition part and text-to-speech part.

- A OCR recognition neural network which is able to extract and recognize the Chinese text from the environmental images transported by the communication system.

- Google text-to-speech API is used to transfer the text we get to speech.

## CRITERION FOR SUCCESS

- Use neural network to recognize the Chinese scene text successfully.

- Use Google text-to-speech API to transfer the recognized text to speech.

- The device can transport the environment pictures or video to server and receive the speech information correctly.

- Blind people could use the speech information locate their position.