Project

# Title Team Members TA Documents Sponsor
18 Wireless Fast Charging Autonomous Car
Yiquan Jin
Yizhi Li
Ziyue Guo
Zongyang Zhu
design_document1.pdf
final_paper1.pdf
final_paper3.pdf
proposal1.pdf
Chushan Li
# Problem

An autonomous car with wireless fast charging capability (Pin≥100W) is proposed. The car can automatically detect the place of wireless charging station and drive to the station with fast speed.

# Solution Overview

- An autonomous car with energy storage and fast speed

- The wireless charging power Pin ≥ 100W

- Car can automatically align to the charging coils

- Car can detect the place of wireless charging station.

- Obstacles can be avoided during the driving

- Car can fully utilize its mechanical structure and shock absorption system to work on various road condition

# Solution Components

## Hardware Components:

- Autonomous Driving Car Prototype: Developed a prototype of an autonomous driving car capable of autonomous navigation and driving functions, including sensors, control units, actuators, and designed the car's exterior and shock absorption structure.

- Wireless Charging System: Designed and implemented a wireless charging system capable of delivering over 100W of power, including hardware devices for the charger and car receiver end.

- Positioning and Navigation Equipment: Integrated high-precision positioning and navigation equipment to enable the car to navigate and plan routes in complex environments.

## Software Components:

- Autonomous Driving Software: Developed a comprehensive autonomous driving software system, including environment perception, path planning, control algorithms, etc., capable of achieving safe and stable autonomous driving functions.

- Charging Alignment Algorithm: Implemented precise charging alignment algorithms, capable of accurately identifying the position of charging stations and automatically aligning the car with the charging coils, ensuring charging efficiency and safety.

- Obstacle Detection and Avoidance Algorithms: Developed efficient obstacle detection and avoidance algorithms, capable of timely identifying obstacles on the road and taking appropriate measures to avoid collisions.

- Charging Station Position Detection Software: Implemented charging station position detection software, capable of accurately identifying the position of charging stations and planning the optimal route to reach the charging station.

# Criterion for Success

Our ultimate goal is to develop an autonomous vehicle with energy storage and high-speed capabilities, equipped with wireless fast charging (Pin ≥ 100W). It should automatically align with charging coils, detect the location of wireless charging stations, navigate around obstacles during driving, and fully utilize its mechanical structure and shock absorption system to adapt to various road conditions.

Low Cost Distributed Battery Management System

Featured Project

Web Board Link: https://courses.engr.illinois.edu/ece445/pace/view-topic.asp?id=27207

Block Diagram: https://imgur.com/GIzjG8R

Members: Logan Rosenmayer (Rosenma2), Anthony Chemaly(chemaly2)

The goal of this project is to design a low cost BMS (Battery Management System) system that is flexible and modular. The BMS must ensure safe operation of lithium ion batteries by protecting the batteries from: Over temperature, overcharge, overdischarge, and overcurrent all at the cell level. Additionally, the should provide cell balancing to maintain overall pack capacity. Last a BMS should be track SOC(state of charge) and SOH (state of health) of the overall pack.

To meet these goals, we plan to integrate a MCU into each module that will handle measurements and report to the module below it. This allows for reconfiguration of battery’s, module replacements. Currently major companies that offer stackable BMSs don’t offer single cell modularity, require software adjustments and require sense wires to be ran back to the centralized IC. Our proposed solution will be able to remain in the same price range as other centralized solutions by utilizing mass produced general purpose microcontrollers and opto-isolators. This project carries a mix of hardware and software challenges. The software side will consist of communication protocol design, interrupt/sleep cycles, and power management. Hardware will consist of communication level shifting, MCU selection, battery voltage and current monitoring circuits, DC/DC converter all with low power draws and cost. (uAs and ~$2.50 without mounting)