Project

# Title Team Members TA Documents Sponsor
35 A Direct Digitally Modulated Wireless Communication System
Bingsheng Hua
Dingkun Wang
Luyi Shen
Qingyang Chen
Xuyang Bai design_document1.pdf
final_paper1.pdf
proposal3.pdf
Shurun Tan
TEAM MEMBERS: Luyi Shen luyis2 Bingsheng Hua bhua5 Dingkun Wang dingkun2 Qingyang Chen qc20

PROJECT NAME: A Direct Digitally Modulated Wireless Communication System

PROBLEM: Communication system is closely related to our life. We measure communication systems primarily by their effectiveness and reliability. But in fact, validity and reliability are a pair of contradictory indicators, and they need a certain compromise. We hope to improve the efficiency of communication system on the basis of guaranteeing the accuracy of communication.

SOLUTION OVERVIEW: The project is to design and implement a kind of communication system for the next generation technology which is much more simplified compared to the systems that existed. The final version of the system should be expected to be able to transmit data like images and videos.

Our basic idea is that the information can be send in digital signal form to matesurface, EM waves will be sent to the matesurface and be scattered to space. The information we want to transit will be carried on scattered EM waves. And once the receiver receives the signal it will be decoded into the original information.

Basically, our project is a kind of innovation or re-creation of an existing communication system. The biggest difference between our design and other systems could be the method to process the information. There is a significant component in our future design called metasurface, which could be used to adjust the phase, magnitude, and polarization along with other significant properties of EM waves which can send multi-digit signal at same time.

As for the functionality of our project, we think it could be an interesting trial and we have faith to finish it since everything we need in the project we could find plenty of research materials and reports to look into. Even if the project is not applicable in the end, we believe the application of the metasurface material could be still powerful in communication system.

SOLUTION COMPONENTS: Metasurface: it could be used to adjust the phase, magnitude, and polarization along with other significant properties of EM waves. Receiver: it is where information will be received and decoded. FPGA: it is where information will be prepared and send to the metasurface. Signal emitter: Send EM wave to matesurface.

CRITERION FOR SUCCESS 1.The system could be used to transmit data like Images and Videos. 2.The system should be able to demonstrate a certain level of supreme communication efficiency

DISTRIBUTION OF WORK: Dingkun Wang & Qingyang Chen

Responsible for the software part of the communication system, including the information processing sent by the computer, the receiver information receives and decode, the interface between software and hardware, etc.

Bingsheng Hua & Luyi Shen

Responsible for the design of metasurface in the communication system and the construction of the hardware of the communication system.

Filtered Back – Projection Optical Demonstration

Featured Project

Project Description

Computed Tomography, often referred to as CT or CAT scans, is a modern technology used for medical imaging. While many people know of this technology, not many people understand how it works. The concepts behind CT scans are theoretical and often hard to visualize. Professor Carney has indicated that a small-scale device for demonstrational purposes will help students gain a more concrete understanding of the technical components behind this device. Using light rather than x-rays, we will design and build a simplified CT device for use as an educational tool.

Design Methodology

We will build a device with three components: a light source, a screen, and a stand to hold the object. After placing an object on the stand and starting the scan, the device will record three projections by rotating either the camera and screen or object. Using the three projections in tandem with an algorithm developed with a graduate student, our device will create a 3D reconstruction of the object.

Hardware

• Motors to rotate camera and screen or object

• Grid of photo sensors built into screen

• Light source

• Power source for each of these components

• Control system for timing between movement, light on, and sensor readings