Getting Parts for Your Project

This page does not apply to ZJUI. This will be updated in the coming weeks.

Steps for obtaining parts

As soon as you know which parts you'll need for your design, it's a good idea to start acquiring them. There are several methods that varying widely in cost and waiting time. The primary methods are listed below, most desirable first.

Note: Each group has a budget of around 1500(Rmb) for parts and resources that may be charged to the course account. However, you need to double check this with your project faculty mentor. If small parts are needed, it is strongly encouraged that you just buy it yourself. Since there is no required textbook for the course, we figure the small monetary payout is more than offset by the savings in time and hassle for your group. Also, if you intend to keep your project when you're finished, we ask that you purchase the parts yourself.

Checkout Hardware from ECE 445

The Srivastava Senior Design Lab has a wide variety of hardware available for use in projects, including microcontrollers, DSP boards, LINX RF transmitters and receivers, GPS units, webcams and more. These things can all be checked out from you TA for use on your project. Please note that parts that you checkout from the lab must be returned by the end of the semester or your student account will be charged.

Please see the working inventory of all components available for checkout in the lab. This inventory is as inclusive as possible but there may be additional items around the lab - feel free to look around but items must be checked out through a TA.

MY.ECE

Parts may be special ordered from Amazon, Digikey, or Mouser through my.ece. Please refer to this tutorial for help using the my.ece purchasing app. Also, ask your TA or check your email for the ece 445 account number. This option requires TA approval before the order is processed. Once you've placed the order, email your TA to let them know there is an order waiting for their approval so that your order can be processed as quickly as possible. Otherwise, the order may be delayed! Since many part orders are usually placed with common vendors like Digi-key, these orders may be grouped into bulk orders placed on Wednesday and Friday.

Parts ordered through this method will be delivered to the ECE Supply Center.

ECE Supply Center

An alternative option is to have the parts ordered from the ECE Supply Center (located in 1031 ECEB). For this option, you will need to fill out an ECE Supply Center Ordering Form and have your TA sign it. Alternatively, you can charge the parts to your student ID if you need to pay for them yourself.

Free Samples from Companies

It should be mentioned that companies many times are willing to provide small quantities of their products to students engaged in design projects. You might consider approaching the manufacturer directly, particularly regarding their newer products which they are interested in promoting. Don't count on success with this, but it has often been very useful.

Personal Purchases

It is always possible and encouraged to purchase your own parts from a local store (Radio Shack, Best Buy, etc.) or order them from online vendors. Personal purchases will not be reimbursed by the department.

The Business Office (last resort)

If all of these methods fail, your order will need to go through the ECE Business Office with the help of your TA.

Dynamic Legged Robot

Featured Project

We plan to create a dynamic robot with one to two legs stabilized in one or two dimensions in order to demonstrate jumping and forward/backward walking. This project will demonstrate the feasibility of inexpensive walking robots and provide the starting point for a novel quadrupedal robot. We will write a hybrid position-force task space controller for each leg. We will use a modified version of the ODrive open source motor controller to control the torque of the joints. The joints will be driven with high torque off-the-shelf brushless DC motors. We will use high precision magnetic encoders such as the AS5048A to read the angles of each joint. The inverse dynamics calculations and system controller will run on a TI F28335 processor.

We feel that this project appropriately brings together knowledge from our previous coursework as well as our extracurricular, research, and professional experiences. It allows each one of us to apply our strengths to an exciting and novel project. We plan to use the legs, software, and simulation that we develop in this class to create a fully functional quadruped in the future and release our work so that others can build off of our project. This project will be very time intensive but we are very passionate about this project and confident that we are up for the challenge.

While dynamically stable quadrupeds exist— Boston Dynamics’ Spot mini, Unitree’s Laikago, Ghost Robotics’ Vision, etc— all of these robots use custom motors and/or proprietary control algorithms which are not conducive to the increase of legged robotics development. With a well documented affordable quadruped platform we believe more engineers will be motivated and able to contribute to development of legged robotics.

More specifics detailed here:

https://courses.engr.illinois.edu/ece445/pace/view-topic.asp?id=30338