Getting Parts for Your Project

This page does not apply to ZJUI. This will be updated in the coming weeks.

Steps for obtaining parts

As soon as you know which parts you'll need for your design, it's a good idea to start acquiring them. There are several methods that varying widely in cost and waiting time. The primary methods are listed below, most desirable first.

Note: Each group has a budget of around 1500(Rmb) for parts and resources that may be charged to the course account. However, you need to double check this with your project faculty mentor. If small parts are needed, it is strongly encouraged that you just buy it yourself. Since there is no required textbook for the course, we figure the small monetary payout is more than offset by the savings in time and hassle for your group. Also, if you intend to keep your project when you're finished, we ask that you purchase the parts yourself.

Checkout Hardware from ECE 445

The Srivastava Senior Design Lab has a wide variety of hardware available for use in projects, including microcontrollers, DSP boards, LINX RF transmitters and receivers, GPS units, webcams and more. These things can all be checked out from you TA for use on your project. Please note that parts that you checkout from the lab must be returned by the end of the semester or your student account will be charged.

Please see the working inventory of all components available for checkout in the lab. This inventory is as inclusive as possible but there may be additional items around the lab - feel free to look around but items must be checked out through a TA.

MY.ECE

Parts may be special ordered from Amazon, Digikey, or Mouser through my.ece. Please refer to this tutorial for help using the my.ece purchasing app. Also, ask your TA or check your email for the ece 445 account number. This option requires TA approval before the order is processed. Once you've placed the order, email your TA to let them know there is an order waiting for their approval so that your order can be processed as quickly as possible. Otherwise, the order may be delayed! Since many part orders are usually placed with common vendors like Digi-key, these orders may be grouped into bulk orders placed on Wednesday and Friday.

Parts ordered through this method will be delivered to the ECE Supply Center.

ECE Supply Center

An alternative option is to have the parts ordered from the ECE Supply Center (located in 1031 ECEB). For this option, you will need to fill out an ECE Supply Center Ordering Form and have your TA sign it. Alternatively, you can charge the parts to your student ID if you need to pay for them yourself.

Free Samples from Companies

It should be mentioned that companies many times are willing to provide small quantities of their products to students engaged in design projects. You might consider approaching the manufacturer directly, particularly regarding their newer products which they are interested in promoting. Don't count on success with this, but it has often been very useful.

Personal Purchases

It is always possible and encouraged to purchase your own parts from a local store (Radio Shack, Best Buy, etc.) or order them from online vendors. Personal purchases will not be reimbursed by the department.

The Business Office (last resort)

If all of these methods fail, your order will need to go through the ECE Business Office with the help of your TA.

VoxBox Robo-Drummer

Featured Project

Our group proposes to create robot drummer which would respond to human voice "beatboxing" input, via conventional dynamic microphone, and translate the input into the corresponding drum hit performance. For example, if the human user issues a bass-kick voice sound, the robot will recognize it and strike the bass drum; and likewise for the hi-hat/snare and clap. Our design will minimally cover 3 different drum hit types (bass hit, snare hit, clap hit), and respond with minimal latency.

This would involve amplifying the analog signal (as dynamic mics drive fairly low gain signals), which would be sampled by a dsPIC33F DSP/MCU (or comparable chipset), and processed for trigger event recognition. This entails applying Short-Time Fourier Transform analysis to provide spectral content data to our event detection algorithm (i.e. recognizing the "control" signal from the human user). The MCU functionality of the dsPIC33F would be used for relaying the trigger commands to the actuator circuits controlling the robot.

The robot in question would be small; about the size of ventriloquist dummy. The "drum set" would be scaled accordingly (think pots and pans, like a child would play with). Actuators would likely be based on solenoids, as opposed to motors.

Beyond these minimal capabilities, we would add analog prefiltering of the input audio signal, and amplification of the drum hits, as bonus features if the development and implementation process goes better than expected.