Request for Approval

Description

The request for approval (RFA) is the very first step in successfully completing a senior design project. Once you are assigned a project, your team must submit an RFA through PACE under the My Project page. Once submitted, your project will be placed on the Web Board as a "Project Request" post, and you can also access this same post through the My Project page we used before.

Once you have submitted your RFA, the course staff will provide feedback on your idea (which will appear at the bottom of your project's page), or suggest changes in the scope of the project and ask you to re-submit an RFA. Based on your responses, your project will be approved, or in some cases, rejected. If your project is rejected, this does not mean failure! Your team just needs to resubmit an RFA that meets the expectations of the course staff. This can be done by repeating the above steps.

Once your project is approved, your team will be assigned a project number in the Projects list. Once all the projects are approved, you will also be assigned a dedicated Professor and TA. This would be the time to double check that all the information for your project in the My Project page is correct.

Video Lecture

Video, Slides

Requirements and Grading

The RFA is worth 5 points, graded credit/no credit based on whether your RFA was submitted before the deadline. The RFA is submitted through PACE under the My Project page, and should include the following information:

Projects must be legal and ethical. They must have significant scope and complexity commensurate with the size of the team. This is, of course, a subjective assessment of the course staff. To gain some insight into this judgment, please browse projects from previous semesters. The project must involve the design of signficant systems (cannot just be integration).

Submission and Deadlines

The RFA submission deadline may be found on the Course Calendar.

Quick Tips and Helpful Hints

Posting: Some general project ideas that are fraught with pitfalls:

Low Cost Myoelectric Prosthetic Hand

Featured Project

According to the WHO, 80% of amputees are in developing nations, and less than 3% of that 80% have access to rehabilitative care. In a study by Heidi Witteveen, “the lack of sensory feedback was indicated as one of the major factors of prosthesis abandonment.” A low cost myoelectric prosthetic hand interfaced with a sensory substitution system returns functionality, increases the availability to amputees, and provides users with sensory feedback.

We will work with Aadeel Akhtar to develop a new iteration of his open source, low cost, myoelectric prosthetic hand. The current revision uses eight EMG channels, with sensors placed on the residual limb. A microcontroller communicates with an ADC, runs a classifier to determine the user’s type of grip, and controls motors in the hand achieving desired grips at predetermined velocities.

As requested by Aadeel, the socket and hand will operate independently using separate microcontrollers and interface with each other, providing modularity and customizability. The microcontroller in the socket will interface with the ADC and run the grip classifier, which will be expanded so finger velocities correspond to the amplitude of the user’s muscle activity. The hand microcontroller controls the motors and receives grip and velocity commands. Contact reflexes will be added via pressure sensors in fingertips, adjusting grip strength and velocity. The hand microcontroller will interface with existing sensory substitution systems using the pressure sensors. A PCB with a custom motor controller will fit inside the palm of the hand, and interface with the hand microcontroller.