Design Review

Video Lecture

Video, Slides

Description

The design review is a 30-minute meeting intended to ensure that the team has a successful project. Students will present (using slides in tandem with their design document) and defend their design while instructors critique it, ask questions, and indentify any infeasible or unsafe aspects. Note that the instructors are not here to attack your design, but to straightforwardly inform you when you may be heading down an unsuccessful path.

Instructors and TAs will ask questions throughout and may choose the order of the blocks to be discussed. Specifically, here is what the course staff are primarily looking for:

  1. Evidence that the overall design and high-level requirements solve the problem stated.
  2. Check if the overall design has suitable difficulty for course standards and completion in one semester. Scope may need to be adjusted if otherwise.
  3. Check team members' engineering preparedness to implement each module.
  4. Check that each team member is assigned an equal portion of the project effort.

Prepare for the following sequence.

  1. Promptly project your slides or other content on projector.
  2. Introduce team members (name, major, and the project part each is in charge of).
  3. Present problem statement and proposed solution (<1 minutes) following the template in DDC (see Description 1.a)
  4. Present design overview (<5 minutes)
    1. High-level requirements: check DDC
    2. Block diagram: check DDC
    3. Physical design
  5. For the remainder of the review, you will participate in a detailed discussion of the design. Plan to cover each block, one at a time, beginning with the most critical. The course staff will ask questions and may step in to guide the discussion. Be prepared to discuss all aspects of your design with a focus on the following.
    1. Requirements & Verification: (see DDC); We'll look at all the important block requirements. Prepare to justify the components chosen and compare with important alternatives.
    2. Evidence that the design meets requirements (use the following as applicable)
      • Simulations
      • Calculations
      • Measurements
      • Schematics
      • Flowcharts
      • Mechanical drawings
      • Tolerance analysis: check DDC
      • Schedule: Suggestions:
        1. Think about what you can do in parallel, what has to be sequential;
        2. Work on hardware before software;
        3. Perform unit testing before system testing;
        4. Unit test each module on a breadboard before starting PCB design);
        5. Leave margin for unexpected delays or accidents. You are mostly responsible for those exceptions, just as if you were the owner of this senior design business;
      • Cost:hourly rate is ~$50 not $10. In addition, apply the 2.5x overhead multiplier ($125/hr is the cost of your senior design business), which includes the cost of salaries of you, your boss, CxOs, sales, janitors, etc.

Grading

The DR Grading Rubric is available to guide your DR preparation. Two sample Design Review documents are available as examples of what we expect: a Good Sample DR, a Moderate Sample DR, and a good example R&V table as it was presented in a final report. Notes are made in red type to point out what is lacking. Note that the grading rubrics and point structure may have evolved since these reports were generated, so use them only as a guide as to what we are generally expecting.

Submission and Deadlines

Your design review presentation should be ready before your Design Review. You do not need to upload this powerpoint to the course website. You will be graded on your live presentation on the day of the Design Review with the course staff.

Pocket Pedal - A Bluetooth Controlled Effects Box

Featured Project

Our idea is to make an inexpensive alternative to traditional pedal powered guitar effects boxes. Essentially, we hope to implement a single aftermarket effects box that can be remote controlled via a mobile app. This low-power, Bluetooth connected application can control the box to change effects on the go. The hardware within the effects box will be able to alter the guitar's signals to create different sounds like echoing, looping, and distortion effects (and possibly more). These effects will be implemented using analog circuits that we will design and construct to be controlled by an app on your phone.

This project eliminates the expensive buy-in for a guitarist hoping to sound like any number of famous musicians with multiple effects pedals. On top of this, it also aims to get rid of the clutter that comes with the numerous pedals and boxes connected to an amplifier. Many pedals today don't even have a visual interface to select effects through some sort of menu. The app will also provide a much more handy and portable visual representation of the possible effects all from the phone in your pocket!

Team:

Jacob Waterman jwaterm2

Kaan Erel erel2

Alex Van Dorn vandorn2