CS/ECE 434: Mobile Computing and Applications


Banner

 Location:
                   Zoom + Online videos
 Instructor URL:       Romit Roy Choudhury
 Email:                        croy@illinois.edu
 Office hours:             After class

 Course TA:               TBD
                                    tbd@illinois.edu    
                                   
 TA hours:                  TBD

 Prerequisites:            Linear Algebra, Probability,
                                     Programming (Py or Matlab)

Course Topics:
 
Math Foundations for data science (we will start from first principles)

      Linear Algebra, Probability, Data/Signal Processing, Machine learning and Convex optimization --> Data Science

       We will introduce and revisit these concepts through the various applications discussed in the course.

GPS, WiFi, Localization, Sensor Fusion

      Algorithms: Triangulation, Trilateration, Clustering, SLAM, Kalman filter

       Applications: Outdoor and indoor localization, mapping, IoT

IMU Sensors, Motion Tracking

      Algorithms: Dead reckoning, PCA, Hidden Markov Models (HMM), Kalman Filters

      Applications: Activity tracking, Gesture recognition, Sports analytics, wearable computing

Microphone, Speakers

      Algorithms: SVD, Noise Cancellation, Dynamic Time Warping, Gradient Descent

      Applications: Acoustic Sensing, Voice Assistants, Earphone computing, AR/VR

Camera, Light

      Algorithms: SIFT/SURF, Wavelets, 3D Point clouds, Structure from motion (SfM)

      Applications: Augmented reality, Visual Communication, Shadow sensing

Wireless Radios (WiFi, BLE, 5G)

      Algorithms: Beamforming, Time of Flight (ToF), Clock synchronization, FMCW, Doppler

      Applications: Presence detection, Liquid identification, Bio-monitoring, Digital agriculture


Security and Privacy

      Algorithms: Classification, Non-linearity, Viterbi decoding, MLE, Stochastic gradient descent

      Applications: Fingerprinting, side channel, inference

Emerging areas: Edge computing, battery-free devices, Earable computing, autonomous cars,

   Grading Information:
    - Homework, Assignments(2-3):   20%
    - Paper reviews (5-8):                    10%
    - Machine problems (4-5):             40%
    - 1 mid-term exam (Apr 15th):      30%
    - Mini project report:                     Only for 4 credit students