
Beamforming and Angle of Arrival (ADA)

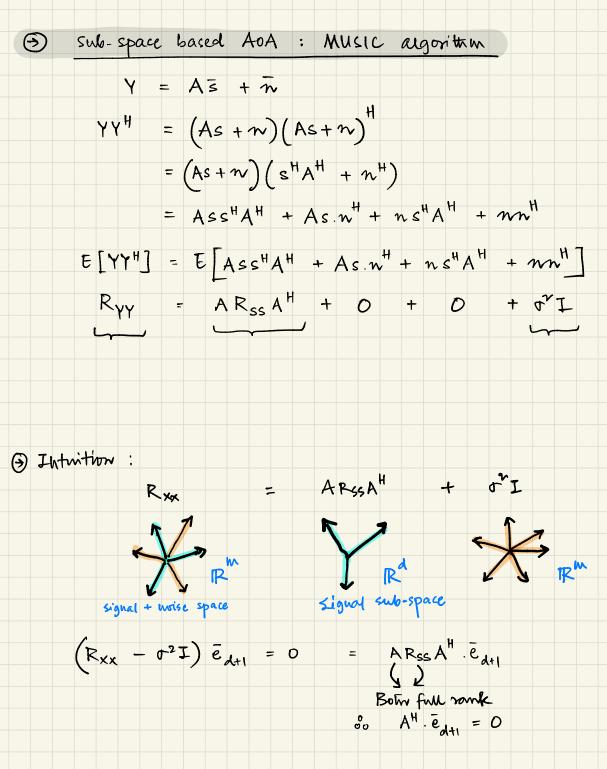
Ownidirectional antennas: radiate signals equally in all directions (3)Directional antennas: Direct the radiation more in certain directions and less in others. Spatial creating such non-circular radiation patierns -> Beamforming -> Θ Filter How ? Let's consider an ARRAY of omni-directional antennas (or even microphons) **\pi** \quad circular mic. among (Alexa) Linear antenna array @ say, these antennas transmit an at the same time? What signals with you receive from different locations? consider nearby locations first: - The aggregate signals at These hearby locations vary based on the location. a0 , a, Ya, Ya3 No patiern is visible as you move. This is camed "NEAR FIELD". 1 Now, consider locations that are far away > When distance from antennas to location L becomes >> than seperation 'd' between the antennas , then The signal paths almost become PARALLEL $d \ll r$ -> called "FAR FIELD"

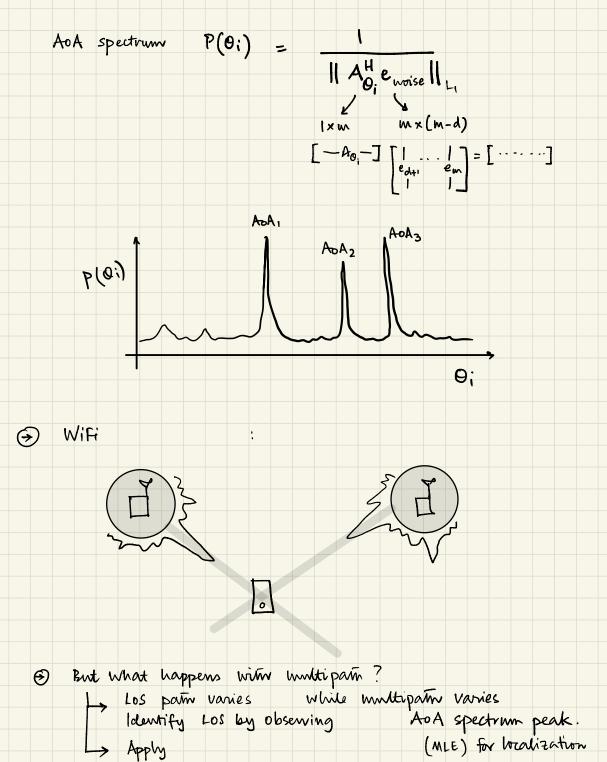
Let's analyze for field effects 7 7 7 7

, φ= SN Y \cong $S_{o}\left(\frac{1-e^{jN\phi}}{1-e^{j\phi}}\right)$, $\phi=\frac{2\pi}{3}d\omega s\theta$ Plot Yf or Yt against O 3 So the beams book like: 3 Observe, the natural beam is pointing towards

Beam Rotation Now I want the main lobe to point towards towards 0. - i.e., How? By making signals from an antennas So, first let's see how signals add up along 0 Recove Y = This is like 1 For max SNR at Rx, i·e., Υ Υ Υ ... Υ χ_ο χ_οεⁱ² χ_οεⁱ² ... χ_οε^{i(N-1)} φ This is called Analogy: Stagger runners at the starting line to ensure they are run the same distance

(€	An	GLE	OF	ARRI	IVAL	- (A	OA)						
					/ /	/		y	/	é	Signal	amiv	ing	from
			Y		P a2							arrow		eds to
			ao	ay	az		a _{N-1}	1						
								Wev	L, Sin	nilan	conce	pts as	bean	mforming
⊕				ed si	gwal -	is n	W							
	yn = [1			=	=					freq.				
						_								
9	1				d Vec	tor,	Wow	do	yon	det.	ect O	. ?		
	l	>	Algo	: rittum	•									
				for 6); = ;; =							rau 1		
				Z ox	;; =				//	calc	Mate	phase s	shift	
				Ce);][
				}					L		1			
				Plot	,				//	/ P	hot the	2 AOA	spec	trum


Perform this for all values of Hope dot product large when


③ Mordelling workse
$$Y = A \le +$$

$$\begin{bmatrix} y_0 \\ y_1 \\ y_{N-1} \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ y_{N-1} \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ y_2 \\ x_4 \end{bmatrix}$$

$$\begin{bmatrix}$$

