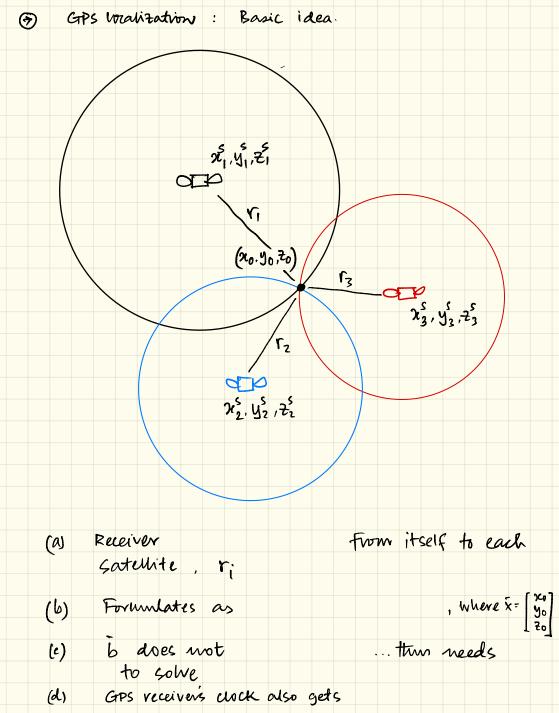
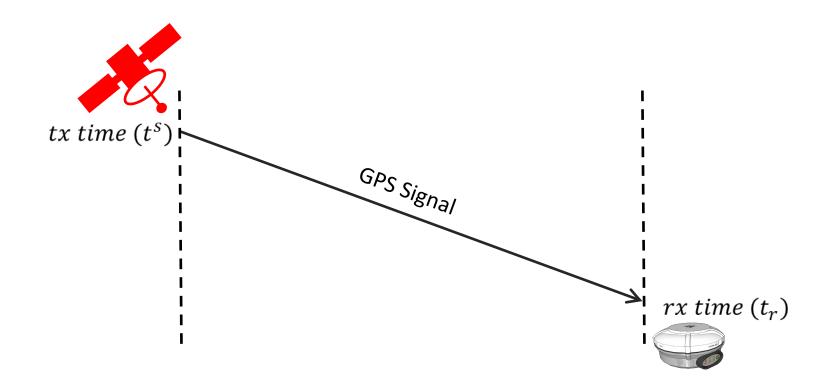

ECE/CS 434 : GPS Basics

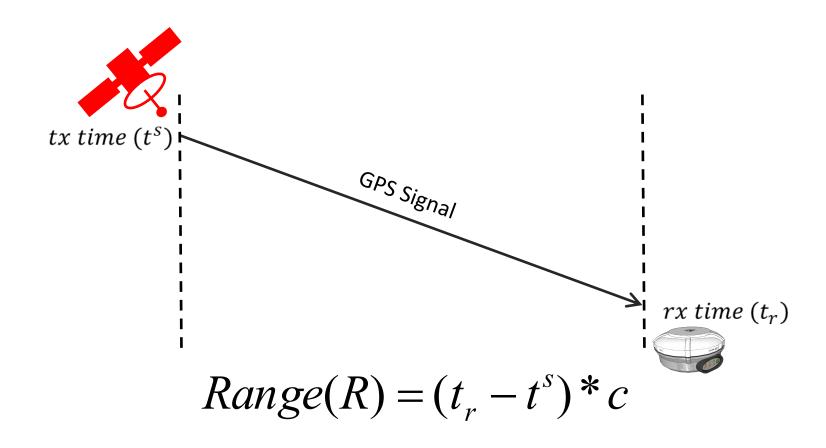
LEO: how earth orbit

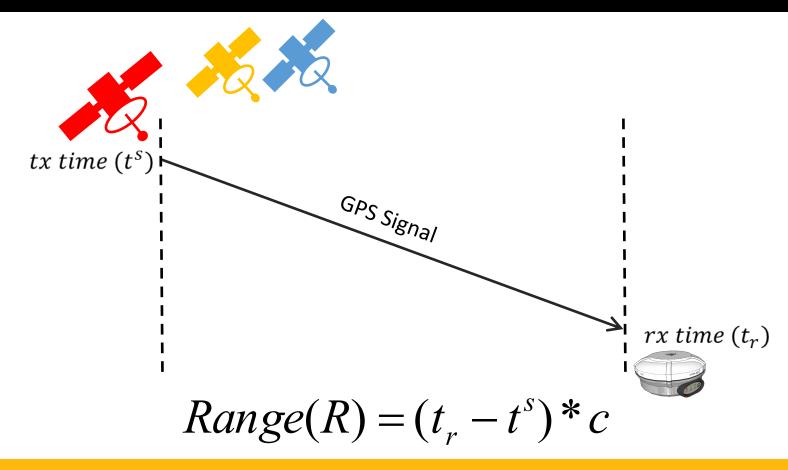
MEO: Medium earth orbit

GEO: Geostationary earth orbit

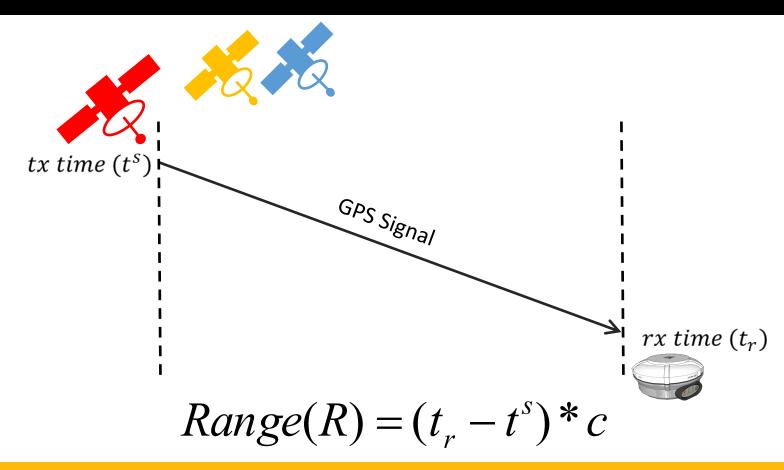

GPS -> satellites around earth


-> mostly in MEO


LEO too close ... satemites
for early coverage

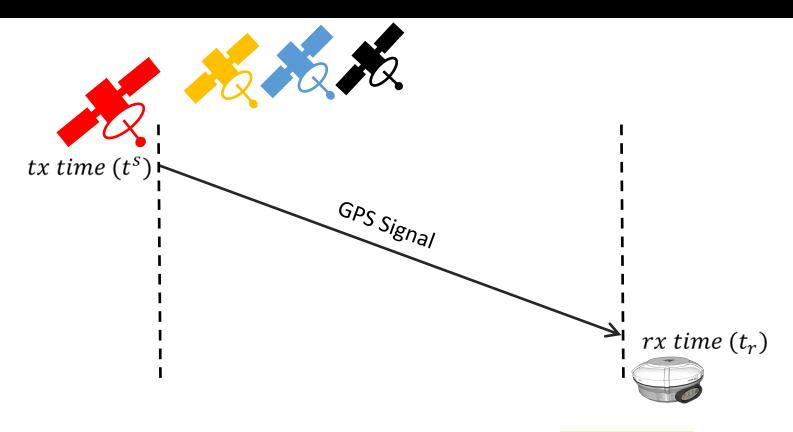

GEO too for ...

③	Navigation Message				
	being sent continuous	y from satellite			
	Why so low? Because	=			
	→ Wmy so low? Because → Note: WiFi bitrate ≈				
(3)) and Saterlite constantly sen	Rina:			
) op Saterite constantly send	>			
	/				
	20				
9	An GPS satellite clocks are syn	chronized. How!			
Θ) + (Hamai,	(Hanai, Colorado, Atlantic, Indian ocean, and Pacific)			
	Illacon	OCENTO, MINITALIFIE)			
	-> Centers ingesting GPS signals	computing			
	satellite locations and clo	cks, and these			
	corrected estimates	to sateuites			
	-> Centers ingesting GPS signals satellite locations and clo corrected estimates to adjust each clock and	nd ephemeris			
	-> Infrequent	needed			
	L) like more sateuite	broation in case			
	of of				
	[/-i-				


However, 3D location needs 3 equations ... hence, use 3 satellites

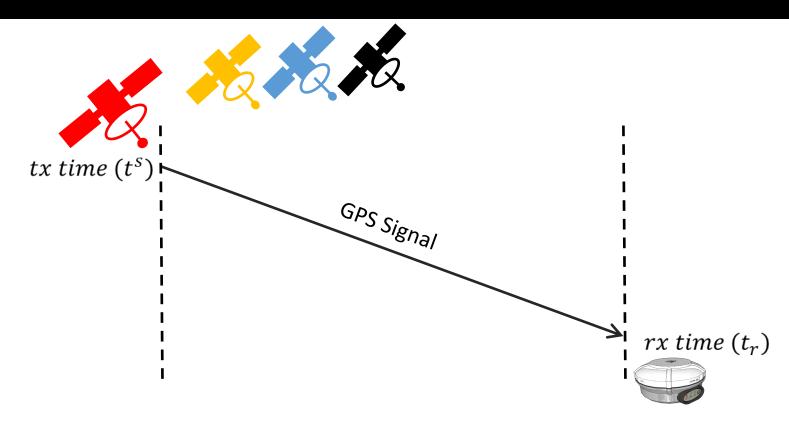
$$\sqrt{(x_{1}^{5}-x_{0})^{2}+(y_{1}^{5}-y_{0})^{2}+(z_{1}^{5}-z_{0})^{2}} = (t_{r}^{(1)}-t_{1}^{5}) - 0$$

$$\sqrt{(x_{2}^{5}-x_{0})^{2}+(y_{2}^{5}-y_{0})^{2}+(z_{2}^{5}-z_{0})^{2}} = (t_{r}^{(2)}-t_{2}^{5}) - 0$$


$$\sqrt{(x_{2}^{5}-x_{0})^{2}+(y_{3}^{5}-y_{0})^{2}+(z_{3}^{5}-z_{0})^{2}} = (t_{r}^{(2)}-t_{2}^{5}) - 0$$

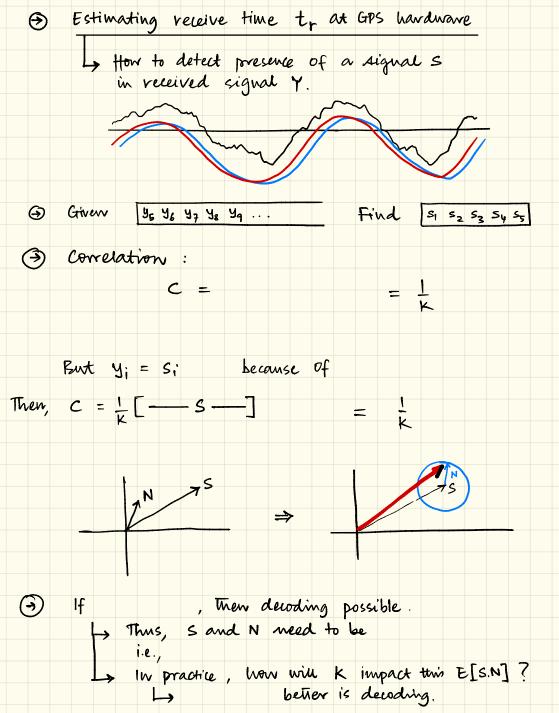
$$\sqrt{(x_{3}^{5}-x_{0})^{2}+(y_{3}^{5}-y_{0})^{2}+(z_{3}^{5}-z_{0})^{2}} = (t_{r}^{(3)}-t_{3}^{5}) - 0$$

However, 3D location needs 3 equations ... hence, use 3 satellites


Satellite Geometry Matrix
$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} R_1 \\ R_2 \\ R_3 \end{bmatrix}$$

$$Range(R) = (t_r - t^s) * c + \delta_{clk} * c$$

New unknown δ ... use 4th satellite and estimate both location and δ



$$Range(R) = (t_r - t^s) * c + \delta_{clk} * c$$

New unknown δ ... use 4th satellite and estimate both location and δ

Satellite
Geometry
Matrix
$$\begin{bmatrix} C \\ C \\ C \\ C \\ C \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ \delta_{clk} \end{bmatrix} = \begin{bmatrix} R_1 \\ R_2 \\ R_3 \\ R_4 \end{bmatrix}$$
1-3m error

\odot	Not ewongh			
	What if the signal	l changes sl	lowty then	, s wiw
	What if the signal	eu with	3	
	Thus,	should	with ci	gual S[n]
				J 0.000 []
				O O
	La Called			property.
	L> caued L> Ideal	<i>μ</i>		
		37		
\odot	Moreover:			-0 40
	L> signal Z, exhibit	expected from	w + ·	should s. and GPS
	ı		10	,
		rise Z will		and GPS
	releive	ev will detec	t tre	
(3) 51	ummavy:	necessary	for satellite	signals:
			,	
	1 Uncorrelated			
	(2) Good auto-con			
	3 Weak Cross corre			
	GPS uses	that	satisfy these	properties.