Applied Machine Learning (CS 441) – Fall 2025

  

  Instructor:  Derek Hoiem

 

  Lectures: Tues/Thurs 12:30-1:45, 0027/1025 CIF

 

  Syllabus

  Lecture Recordings, ClassTranscribe

  Lecture Review Questions and Answers

  CampusWire Discussion (sign-up link/code: 4730)

  Canvas Submission (Gradescope code: 22Y75D)

 

  Textbook: Applied Machine Learning by David Forsyth

                                                                                                           

  

   Assignments

HW 1 – Instance-based Methods (Sep 15)

HW 2 – PCA and Linear Models (Sep 29)

HW 3 – PDFs and Outliers (Oct 13)

HW 4 – Trees and MLPs (Nov 3)

HW 5 – Deep Learning and Applications (Nov 17)

Final Project (Dec 14)

 

 

 

 

 

 

  Class Schedule   (subject to change)

Date

Topic

Link

Reading/Notes

Aug 26 (Tues)

Introduction

ppt ; pdf

Jupyter, numpy, linear algebra tutorials ipynb

 

Fundamentals of Learning

 

 

Aug 28 (Thurs)

K-NN Classification, Data Representation

ppt ; pdf

AML Ch 1.1-1.2

Sep 2 (Tues)

K-NN Regression, Generalization

ppt ; pdf

AML Ch 1.1-1.2

Sep 4 (Thurs)

Search and Clustering

ppt ; pdf

AML Ch 8

Sep 8 (Mon)

Probability/Background Review (live zoom session 9-10pm)

ppt ; pdf; recording

PrairieLearn Mini-hw

Sep 9 (Tues)

Dimensionality reduction: PCA, embeddings

ppt ; pdf

AML Ch 5, 6, 19

Sep 11 (Thurs)

Linear regression, regularization

ppt ; pdf

 AML Ch 10-11

Sep 15 (Mon)

HW 1 (Instance-based Methods) due

 

 

Sep 16 (Tues)

Linear classifiers: logistic regression, SVM

ppt ; pdf

AML Ch 11.3, 2.1

Sep 18 (Thurs)

Naïve Bayes Classifier

ppt ; pdf

AML Ch 2

Sep 23 (Tues)

EM and Latent Variables

ppt ; pdf

AML Ch 9

Sep 25 (Thurs)

Density estimation: MoG, Hists, KDE

ppt ; pdf

AML Ch 9

Sep 29 (Mon)

HW 2 (PCA and Linear Models) due

 

 

Sep 30 (Tues)

Outliers and Robust Estimation

ppt ; pdf

Linear fit demo (Matlab)

Oct 2-5

Exam 1 at CBTF

Optional review on Oct 2 in lecture

pdf ;

recording

practice questions ; ref sheet

Oct 7 (Tues)

Decision Trees

ppt ; pdf

AML Ch 2

Oct 9 (Thurs)

Ensembles and Random Forests

ppt ; pdf

AML Ch 2

 

Deep Learning

 

 

Oct 13 (Mon)

HW 3 (PDFs and Outliers)

 

 

Oct 14 (Tues)

Stochastic Gradient Descent 

ppt ; pdf

AML Ch 2.1; Pegasos (Shalev-Shwartz et al. 2007)

Oct 16 (Thurs)

MLPs and Backprop

ppt ; pdf

AML 16

Oct 21 (Tues)

CNNs and Keys to Deep Learning

 

AML Ch 17-18, ResNet (He et al. 2016)

Oct 23 (Thurs)

Deep Learning Optimization and Computer Vision

 

 PyTorch Tutorial from CS444

Oct 28 (Tues)

Words and Attention

 

Sub-word Tokenization (Sennrich et al. 2016)

Word2Vec (Mikolov et al. 2013)

Attention is all you need (Vaswani et al. 2017)

Transformer tutorial/walkthrough

Oct 30 (Thurs)

Transformers in Language and Vision

 

BERT (Devlin et al. 2019)

ViT (Dosovitskiy et al. 2021)

Unified-IO (Lu et al. 2022)

Nov 3 (Mon)

HW 4 (Trees and MLPs) due

 

 

Nov 4 (Tues)

Foundation Models: CLIP and  GPT-3

 

CLIP (Radford et al. 2021)

Nov 6-9

Exam 2 at CBTF (Optional review on Nov 7)

 

practice questions

 

Applications

 

 

Nov 11 (Tues)

Ethics and Impact of AI

 

Nov 13 (Thurs)

Bias in AI, Fair ML

 

 

Nov 14 (Fri)

Final Project Planning Form due

 

See CampusWire post #207

Nov 17 (Mon)

HW 5 (Deep Learning and Applications) due

 

 

Nov 18 (Tues)

Audio and 1D Signals

 

Audio Deep Learning

Nov 20 (Thurs)

Building and Deploying ML

Guest speaker: Chenxi Yu (State Farm)

 

(no slides)

Nov 22-Nov 30

Fall Break

 

 

Dec 2 (Tues)

Reinforcement Learning

 

Dec 4 (Thurs)

Review, summary, looking forward

 

 

Dec 4-9

Exam 3 at CBTF

 

 practice questions

Dec 14 (Sun)

Final Project due (cannot be late)