Applied Machine Learning (CS 441) – Fall 2025

  

  Instructor:  Derek Hoiem

 

  Lectures: Tues/Thurs 12:30-1:45, 0027/1025 CIF

 

  Syllabus

  Lecture Recordings, ClassTranscribe

  Lecture Review Questions and Answers

  CampusWire Discussion (sign-up link/code: 4730)

  Canvas Submission (Gradescope code: 22Y75D)

 

  Textbook: Applied Machine Learning by David Forsyth

                                                                                                                          

  

   Assignments

HW 1 – Instance-based Methods (Sep 15)

HW 2 – PCA and Linear Models (Sep 29)

HW 3 – PDFs and Outliers (Oct 13)

HW 4 – Trees and MLPs (Nov 3)

HW 5 – Deep Learning and Applications (Nov 17)

Final Project (Dec 14)

 

 

 

 

 

 

  Class Schedule   (subject to change)

Date

Topic

Link

Reading/Notes

Aug 26 (Tues)

Introduction

ppt ; pdf

Jupyter, numpy, linear algebra tutorials ipynb

 

Fundamentals of Learning

 

 

Aug 28 (Thurs)

K-NN Classification, Data Representation

ppt ; pdf

AML Ch 1.1-1.2

Sep 2 (Tues)

K-NN Regression, Generalization

ppt ; pdf

AML Ch 1.1-1.2

Sep 4 (Thurs)

Search and Clustering

ppt ; pdf

AML Ch 8

Sep 8 (Mon)

Probability/Background Review (live zoom session 9-10pm)

ppt ; pdf; recording

PrairieLearn Mini-hw

Sep 9 (Tues)

Dimensionality reduction: PCA, embeddings

ppt ; pdf

AML Ch 5, 6, 19

Sep 11 (Thurs)

Linear regression, regularization

ppt ; pdf

 AML Ch 10-11

Sep 15 (Mon)

HW 1 (Instance-based Methods) due

 

 

Sep 16 (Tues)

Linear classifiers: logistic regression, SVM

ppt ; pdf

AML Ch 11.3, 2.1

Sep 18 (Thurs)

Naïve Bayes Classifier

ppt ; pdf

AML Ch 2

Sep 23 (Tues)

EM and Latent Variables

ppt ; pdf

AML Ch 9

Sep 25 (Thurs)

Density estimation: MoG, Hists, KDE

 

AML Ch 9

Sep 29 (Mon)

HW 2 (PCA and Linear Models) due

 

 

Sep 30 (Tues)

Outliers and Robust Estimation

 

Linear fit demo (Matlab)

Oct 2-5

Exam 1 at CBTF

Optional review on Oct 2 in lecture

pdf ;

recording

practice questions ; ref sheet

Oct 7 (Tues)

Decision Trees

 

AML Ch 2

Oct 9 (Thurs)

Ensembles and Random Forests

 

AML Ch 2

 

Deep Learning

 

 

Oct 13 (Mon)

HW 3 (PDFs and Outliers)

 

 

Oct 14 (Tues)

Stochastic Gradient Descent 

 

AML Ch 2.1; Pegasos (Shalev-Shwartz et al. 2007)

Oct 16 (Thurs)

MLPs and Backprop

 

AML 16

Oct 21 (Tues)

CNNs and Keys to Deep Learning

 

AML Ch 17-18, ResNet (He et al. 2016)

Oct 23 (Thurs)

Deep Learning Optimization and Computer Vision

 

 PyTorch Tutorial from CS444

Oct 28 (Tues)

Words and Attention

 

Sub-word Tokenization (Sennrich et al. 2016)

Word2Vec (Mikolov et al. 2013)

Attention is all you need (Vaswani et al. 2017)

Transformer tutorial/walkthrough

Oct 30 (Thurs)

Transformers in Language and Vision

 

BERT (Devlin et al. 2019)

ViT (Dosovitskiy et al. 2021)

Unified-IO (Lu et al. 2022)

Nov 3 (Mon)

HW 4 (Trees and MLPs) due

 

 

Nov 4 (Tues)

Foundation Models: CLIP and  GPT-3

 

CLIP (Radford et al. 2021)

Nov 6-9

Exam 2 at CBTF (Optional review on Nov 7)

 

practice questions

 

Applications

 

 

Nov 11 (Tues)

Ethics and Impact of AI

 

Nov 13 (Thurs)

Bias in AI, Fair ML

 

 

Nov 17 (Mon)

HW 5 (Deep Learning and Applications) due

 

 

Nov 18 (Tues)

Audio and 1D Signals

 

Audio Deep Learning

Nov 20 (Thurs)

Building and Deploying ML

Guest speaker: Chenxi Yu (State Farm)

 

(no slides)

Nov 22-Nov 30

Fall Break

 

 

Dec 2 (Tues)

Reinforcement Learning

 

Dec 4 (Thurs)

Review, summary, looking forward

 

 

Dec 4-9

Exam 3 at CBTF

 

 practice questions

Dec 14 (Sun)

Final Project due (cannot be late)