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Recap of approaches we’ve seen so far

• Nearest neighbor is widely used
– Super-powers: can instantly learn new classes and predict from one or many examples

• Logistic Regression is widely used
– Super-powers: Effective prediction from high-dimensional features

• Linear Regression is widely used
– Super-powers: Can extrapolate, explain relationships, and predict continuous values 

from many variables

• Almost all algorithms involve nearest neighbor, logistic regression, or linear 
regression
– The main learning challenge is typically feature learning



Today’s Lecture

• Introduce probabilistic models

• Review of probability

• Naïve Bayes Classifier
– Assumptions / model
– How to estimate from data
– How to predict given new features

• “Semi-naïve Bayes” object detector



Probabilistic model

𝑦𝑦∗ = argmax
𝑦𝑦

𝑃𝑃(𝑦𝑦|𝑥𝑥)



Joint and conditional probability

𝑃𝑃 𝑥𝑥,𝑦𝑦 = 𝑃𝑃 𝑥𝑥 𝑦𝑦 𝑃𝑃 𝑦𝑦 = 𝑃𝑃 𝑦𝑦 𝑥𝑥 𝑃𝑃(𝑥𝑥)

𝑃𝑃 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 = 𝑃𝑃 𝑎𝑎 𝑏𝑏, 𝑐𝑐 𝑃𝑃 𝑏𝑏 𝑐𝑐 𝑃𝑃(𝑐𝑐)

𝑃𝑃 𝑥𝑥 𝑦𝑦 =
𝑃𝑃 𝑥𝑥,𝑦𝑦
𝑃𝑃 𝑦𝑦

=
𝑃𝑃 𝑦𝑦 𝑥𝑥 𝑃𝑃 𝑥𝑥

𝑃𝑃 𝑦𝑦Bayes Rule: 



�
𝑣𝑣∈𝑥𝑥

𝑃𝑃 𝑥𝑥 = 𝑣𝑣 = 1

�
𝑣𝑣∈𝑥𝑥

𝑃𝑃 𝑥𝑥 = 𝑣𝑣,𝑦𝑦 = 𝑃𝑃(𝑦𝑦)

Law of total probability

Marginalization

For continuous variables, replace sum over possible values with integral over domain



Estimate probabilities of discrete variables by counting

𝑃𝑃 𝑥𝑥 = 𝑣𝑣 =
1

|𝑁𝑁|
�
𝑛𝑛

𝛿𝛿 𝑥𝑥𝑛𝑛 = 𝑣𝑣



Example

F T

Cat 15 25

Dog 5 40

Larger than 10 lbs?
𝑃𝑃 𝑦𝑦 = 𝐶𝐶𝑎𝑎𝐶𝐶 =

𝑃𝑃 𝑦𝑦 = 𝐶𝐶𝑎𝑎𝐶𝐶 𝑥𝑥 = 𝐹𝐹 =

𝑃𝑃(𝑥𝑥 = 𝐹𝐹|𝑦𝑦 = 𝐶𝐶𝑎𝑎𝐶𝐶) =

𝑦𝑦

𝑥𝑥:



𝑃𝑃 𝐴𝐴,𝐵𝐵 = 𝑃𝑃 𝐴𝐴 𝑃𝑃 𝐵𝐵

𝑃𝑃 𝐴𝐴 𝐵𝐵 = 𝑃𝑃(𝐴𝐴),      𝑃𝑃 𝐵𝐵 𝐴𝐴 = 𝑃𝑃(𝐵𝐵)

A is independent of B if (and only if)



What if you have 100 variables?  How can you count all 
combinations?

Fully modeling dependencies between many variables (more 
than 3 or 4) is challenging and requires a lot of data



Probabilistic model

𝑦𝑦∗ = argmax
𝑦𝑦

𝑃𝑃(𝑦𝑦|𝑥𝑥)

Or equivalently…

𝑦𝑦∗ = argmax
𝑦𝑦

𝑃𝑃 𝑥𝑥 𝑦𝑦 𝑃𝑃 𝑦𝑦

argmax
𝑦𝑦

 𝑃𝑃 𝑦𝑦 𝑥𝑥 = argmax
𝑦𝑦

 𝑃𝑃 𝑦𝑦 𝑥𝑥 𝑃𝑃 𝑥𝑥 = argmax
𝑦𝑦

 𝑃𝑃 𝑦𝑦, 𝑥𝑥 = argmax
𝑦𝑦

𝑃𝑃 𝑥𝑥 𝑦𝑦 𝑃𝑃(𝑦𝑦)



Notation 
• 𝑥𝑥𝑖𝑖 is the ith feature variable

– 𝑖𝑖 indicates the feature index

• 𝑥𝑥𝑛𝑛 is the nth feature vector
– 𝑛𝑛 indicates the sample index
– 𝑦𝑦𝑛𝑛 is the nth label

• 𝑥𝑥𝑛𝑛𝑖𝑖 is the ith feature of the nth sample
• 𝛿𝛿(𝑥𝑥𝑛𝑛𝑛𝑛 = 𝑣𝑣) returns 1 if 𝑥𝑥𝑛𝑛𝑛𝑛 = 𝑣𝑣; 0 otherwise

– 𝑣𝑣 indicates a feature value
– 𝛿𝛿 is an indicator function, mapping from true/false to 1/0



Naïve Bayes Model
Assume features x1..xm are independent given the label y:

Then

𝑃𝑃 𝒙𝒙 𝑦𝑦 = �
𝑛𝑛

𝑃𝑃(𝑥𝑥𝑛𝑛|𝑦𝑦)

𝑦𝑦∗ = argmax
𝑦𝑦

�
𝑛𝑛

𝑃𝑃 𝑥𝑥𝑛𝑛 𝑦𝑦 𝑃𝑃(𝑦𝑦)



Examples
• Digit classification: choose 

the label that maximizes 
the product of likelihoods 
of each pixel intensity

• Temperature prediction: 
each feature predicts y 
with some offset and 
variance (𝑦𝑦 − 𝑥𝑥𝑖𝑖 is 
univariate Gaussian)



Naïve Bayes Algorithm
• Training

1. Estimate parameters for 𝑃𝑃(𝑥𝑥𝑖𝑖|𝑦𝑦) for each 𝑖𝑖
2. Estimate parameters for 𝑃𝑃(𝑦𝑦)

• Prediction
1. Solve for 𝑦𝑦 that maximizes 𝑃𝑃(𝑥𝑥,𝑦𝑦) 𝑦𝑦∗ = argmax

𝑦𝑦
�
𝑛𝑛

𝑃𝑃 𝑥𝑥𝑛𝑛 𝑦𝑦 𝑃𝑃(𝑦𝑦)



How to estimate 𝑃𝑃(𝑥𝑥𝑖𝑖|𝑦𝑦) from data?
• Basic principles of fitting likelihood parameters from data

– MLE (maximum likelihood estimation): Choose the parameter that 
maximizes the likelihood of the data

– MAP (maximum a priori): Choose the parameter that maximizes the 
data likelihood and its own prior

• As Warren Buffet says, it’s not just about maximizing expected return – it’s 
about making sure there are no zeros.



How to estimate 𝑃𝑃(𝑥𝑥𝑖𝑖|𝑦𝑦) from data?
• Bernoulli (x is binary; y is discrete) 

𝑃𝑃 𝑥𝑥𝑛𝑛 𝑦𝑦 = 𝑘𝑘 = 𝜃𝜃𝑘𝑘𝑛𝑛
𝑥𝑥𝑖𝑖(1 − 𝜃𝜃𝑘𝑘𝑛𝑛)1−𝑥𝑥𝑖𝑖

• Categorical (x is has multiple discrete values, y is discrete)

theta_ki[k,i] = np.sum((X[:,i]==1) & (y==k)) / np.sum(y==k)



How to estimate 𝑃𝑃(𝑥𝑥𝑖𝑖|𝑦𝑦) from data?
• xi is Gaussian (aka Normal), y is discrete



How to estimate 𝑃𝑃(𝑥𝑥𝑖𝑖|𝑦𝑦) from data?
• (𝑦𝑦 − 𝑥𝑥𝑖𝑖) is Gaussian 

mu[i] = np.mean(y-X[:,i], axis=0)
std[i] = np.std(y-X[:,i], axis=0)



How to estimate 𝑃𝑃(𝑥𝑥𝑖𝑖|𝑦𝑦) from data?
• xi and y are jointly Gaussian

– 𝑁𝑁(. ) stands for normal distribution with given value, mean, and (co-)variance 



How to estimate 𝑃𝑃(𝑥𝑥𝑖𝑖|𝑦𝑦) from data?
• 𝑥𝑥𝑖𝑖 is continuous (non-Gaussian), 𝑦𝑦 is discrete

– First turn 𝑥𝑥 into discrete (e.g. if values range [0, 1), assign 
x=floor(x*10)

– Now can estimate as categorical



How to estimate 𝑃𝑃(𝑥𝑥𝑖𝑖|𝑦𝑦) from data?
• If 𝑥𝑥 is text, e.g. “blue”, “orange”, “green”

– Map each possible text value into an integer and solve as categorical



How to estimate 𝑃𝑃(𝑦𝑦)?

Three options:
• Assume that 𝑦𝑦 is “uniform” (every value is equally likely) and ignore
• If 𝑦𝑦 is discrete, count
• If 𝑦𝑦 is continuous, model as Gaussian or convert to discrete and count



Stretch break: Simple Naive Bayes example
• Suppose I want to classify a fruit based on description

– Features: weight, color, shape, whether it’s hard
– E.g. 

• 0.5 lb, “red”, “round”, yes
• 15 lb, “green”, “oval”, yes
• 0.01 lb, “purple”, “round”, no

Q1: What are these three fruit?
Q2: How might you model P(xi|fruit) for each of 
these four features?



Simple Naive Bayes example
• Suppose I want to classify a fruit based on description

– Features: weight, color, shape, whether it’s hard
– E.g. 

• 0.5 lb, “red”, “round”, yes
• 15 lb, “green”, “oval”, yes
• 0.01 lb, “purple”, “round”, no

– Model P(weight | fruit) as a Gaussian
– Model P(color | fruit) as a discrete distribution (multinomial)
– Model P(shape | fruit) as a categorical
– Model P(is_hard | fruit) as a Bernoulli (binary)

Apple
Watermelon

Grape



How to predict y from x?

If 𝑦𝑦 is discrete:
1. Compute 𝑃𝑃(𝑥𝑥,𝑦𝑦) for each value of 𝑦𝑦
2. Choose value with maximum likelihood 

Turning product into sum of logs is an important frequently 
used trick for argmax/argmin!



How to predict 𝑦𝑦 from 𝑥𝑥 when (𝑦𝑦 − 𝑥𝑥𝑛𝑛) is Gaussian

General formulation (set partial derivative wrt 
𝑦𝑦 of log𝑃𝑃(𝑥𝑥,𝑦𝑦) to 0)

Example of Temperature regression:
𝑦𝑦 − 𝑥𝑥𝑛𝑛 is Gaussian

Prediction is weighted average of 
means, where weights are inverse 
variance

𝑃𝑃 𝑥𝑥𝑛𝑛 𝑦𝑦 ~ 𝑁𝑁 𝑦𝑦 − 𝑥𝑥𝑛𝑛 ,𝜎𝜎2 =



Using priors
• Priors on the likelihood parameters prevent a single feature 

from having zero or extremely low likelihood due to insufficient 
training data

• Discrete: initialize counts with 𝛼𝛼 (e.g. 𝛼𝛼 = 1)
P(xi=v|y=k) = (𝛼𝛼 + count(xi=v, y=k)) / sumv[𝛼𝛼 + count(xi=v, y=k)]

• Continuous: add some 𝜖𝜖 to the variance (e.g. 𝜖𝜖 = 0.1/𝑁𝑁)
– For multivariate, add to diagonal of covariance

theta_kiv[k,i,v] = (np.sum((X[:,i]==v) & (y==k))+alpha) / (np.sum(y==k)+alpha*num_v)

std[i] = np.std(y-X[:,i], axis=0)+np.sqrt(0.1/len(X))



MLE and MAP estimates of binary variable likelihoods
• MLE (maximize data likelihood) 

𝑃𝑃 𝑥𝑥 = 1 𝑦𝑦 = 1 =
∑𝑛𝑛 𝛿𝛿(𝑥𝑥𝑛𝑛 = 1,𝑦𝑦𝑛𝑛 = 1)

∑𝑛𝑛 𝛿𝛿 𝑥𝑥𝑛𝑛 = 0,𝑦𝑦𝑛𝑛 = 1 + ∑𝑛𝑛 𝛿𝛿 𝑥𝑥𝑛𝑛 = 1,𝑦𝑦𝑛𝑛 = 1

• MAP (maximum a posteriori) with prior 𝛼𝛼

𝑃𝑃 𝑥𝑥 = 1 𝑦𝑦 = 1 =
𝛼𝛼 + ∑𝑛𝑛 𝛿𝛿(𝑥𝑥𝑛𝑛 = 1,𝑦𝑦𝑛𝑛 = 1)

(𝛼𝛼 + ∑𝑛𝑛 𝛿𝛿 𝑥𝑥𝑛𝑛 = 0,𝑦𝑦𝑛𝑛 = 1 ) + (𝛼𝛼 + ∑𝑛𝑛 𝛿𝛿 𝑥𝑥𝑛𝑛 = 1,𝑦𝑦𝑛𝑛 = 1 )

• This is a Bayesian prior that implies 𝑃𝑃 𝑥𝑥 = 0 𝑦𝑦 ≈ 𝑃𝑃(𝑥𝑥 = 1|𝑦𝑦), unless data tells us differently
• Similar concept to regularization that we saw in linear regression and classification
• Important because it avoids zeros that could dominate the overall likelihood and provides a 

more stable estimate with limited data
• With more data, the prior has less effect



Example: estimate joint probability under Naïve Bayes 
assumption

# x1 x2 y

1 1 1 1

2 0 1 1

3 1 0 0

4 0 1 0

5 1 1 1

6 1 0 0

7 1 0 1

8 0 1 0

x1 𝑦𝑦 = 0 𝑦𝑦 = 1

0

1

𝑃𝑃(𝑥𝑥𝑥|𝑦𝑦)

x2 𝑦𝑦 = 0 𝑦𝑦 = 1

0
1

𝑃𝑃(𝑥𝑥𝑥|𝑦𝑦)

𝑃𝑃(𝑦𝑦)
𝑦𝑦 = 0 𝑦𝑦 = 1

𝑃𝑃(𝑦𝑦 = 0, 𝑥𝑥𝑥 = 1, 𝑥𝑥𝑥 = 1) = ?

𝑃𝑃(𝑦𝑦 = 0|𝑥𝑥𝑥 = 1, 𝑥𝑥𝑥 = 1) = ?

𝑃𝑃(𝑦𝑦 = 1, 𝑥𝑥𝑥 = 1, 𝑥𝑥𝑥 = 1) = ?



# x1 x2 y

1 1 1 1

2 0 1 1

3 1 0 0

4 0 1 0

5 1 1 1

6 1 0 0

7 1 0 1

8 0 1 0

x1 𝑦𝑦 = 0 𝑦𝑦 = 1

0 2/4 1/4

1 2/4 3/4

𝑃𝑃(𝑥𝑥𝑥|𝑦𝑦)

x2 𝑦𝑦 = 0 𝑦𝑦 = 1

0 2/4 1/4
1 2/4 3/4

𝑃𝑃(𝑥𝑥𝑥|𝑦𝑦)

𝑃𝑃(𝑦𝑦)
𝑦𝑦 = 0 𝑦𝑦 = 1

2/4 2/4

𝑃𝑃(𝑦𝑦 = 0, 𝑥𝑥𝑥 = 1, 𝑥𝑥𝑥 = 1) = 1/8

𝑃𝑃(𝑦𝑦 = 0|𝑥𝑥𝑥 = 1, 𝑥𝑥𝑥 = 1) = 4/13

𝑃𝑃(𝑦𝑦 = 1, 𝑥𝑥𝑥 = 1, 𝑥𝑥𝑥 = 1) = 9/3𝑥



Prior over parameters: initialize each count with 𝛼𝛼

# x1 x2 y

1 1 1 1

2 0 1 1

3 1 0 0

4 0 1 0

5 1 1 1

6 1 0 0

7 1 0 1

8 0 1 0

x1 𝑦𝑦 = 0 𝑦𝑦 = 1

0 2/4 1/4

1 2/4 3/4

𝑃𝑃(𝑥𝑥𝑥|𝑦𝑦)

x2 𝑦𝑦 = 0 𝑦𝑦 = 1

0 2/4 1/4
1 2/4 3/4

𝑃𝑃(𝑥𝑥𝑥|𝑦𝑦)

𝑃𝑃(𝑦𝑦)
𝑦𝑦 = 0 𝑦𝑦 = 1

2/4 2/4

x1 𝑦𝑦 = 0 𝑦𝑦 = 1

0 3/6 2/6

1 3/6 4/6

𝛼𝛼 = 1

x2 𝑦𝑦 = 0 𝑦𝑦 = 1

0 3/6 2/6

1 3/6 4/6

𝑦𝑦 = 0 𝑦𝑦 = 1

2/4 2/4



Use case: “Semi-naïve Bayes” object detection

• Best performing 
face/car detector in 
2000-2005

• Model probabilities of 
small groups of features 
(wavelet coefficients)

• Search for groupings, 
discretize features, 
estimate parameters

https://www.cs.cmu.edu/afs/cs.cmu.edu/user/hws/www/CVPR00.pdf 

https://www.cs.cmu.edu/afs/cs.cmu.edu/user/hws/www/CVPR00.pdf


Naïve Bayes Summary
• Key Assumptions

– Features are independent, given the labels
• Model Parameters

– Parameters of probability functions P(xi|y) and P(y)
• Designs

– Choice of probability function
• When to Use

– Limited training data 
– Features are not highly interdependent
– Want something fast to code, train, and test

• When Not to Use
– Logistic or linear regression will usually work better if there is sufficient data 

(more flexible / fewer assumptions than Naïve Bayes)
– Does not provide a good confidence estimate because it “overcounts” influence 

of dependent variables



Naïve Bayes
• Pros

– Easy and fast to train
– Fast inference
– Can be used with continuous, discrete, or mixed features

• Cons
– Does not account for feature interactions
– Does not provide good confidence estimate

• Notes
– Best when used with discrete variables, variables that are well fit by 

Gaussian, or kernel density estimation



Things to remember
• Probabilistic models are a large class of 

machine learning methods

• Naïve Bayes assumes that features are 
independent given the label
– Easy/fast to estimate parameters
– Less risk of overfitting when data is limited

• You can look up how to estimate parameters 
for most common probability models
– Or take partial derivative of total data/label 

likelihood given parameter

• Prediction involves finding y that maximizes 
𝑃𝑃(𝑥𝑥,𝑦𝑦), either by trying all 𝑦𝑦 or solving 
partial derivative

• Maximizing log𝑃𝑃(𝑥𝑥,𝑦𝑦) is equivalent to 
maximizing 𝑃𝑃(𝑥𝑥,𝑦𝑦) and often much easier

𝑃𝑃 𝒙𝒙,𝑦𝑦 = �
𝑛𝑛

𝑃𝑃 𝑥𝑥𝑛𝑛 𝑦𝑦 𝑃𝑃(𝑦𝑦)



Next week
• EM and Density Estimation
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