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Today’s Class: EM Algorithm



I will describe three problems.  Think about what they 
have in common.



“Bad Annotators” Problem
You want to train an algorithm to predict whether a 
photograph is attractive.  You collect annotations from 
Mechanical Turk.  Some annotators try to give accurate 
ratings, but others answer randomly.

Challenge: Determine which people to trust and the 
average rating by accurate annotators.
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Foreground/Background Segmentation
You are given an image and want to assign 
foreground/background pixels.

Challenge: Segment the image into figure and 
ground without knowing what the foreground 
looks like in advance.

Foreground

Background



Topic Models

Fig source

Documents have a “topic” that is predictive of the words

Challenge: We don’t know what the topics are, or what 
distribution of words each has

https://theintelligenceofinformation.wordpress.com/2016/12/06/topic-modeling-latent-dirichlet-allocation-vs-correlation-explanation-alternative/


What do these problems have in common?

1. We think there is some underlying factor that is not known
– Whether annotator is good or bad
– Whether pixel is in foreground or background
– Topic of a document

2. We have some model for the probability of data given that 
underlying factor

3. But we don’t know the parameters of the model

These are “missing data” or “latent variable” problems – a critical piece of information is not observed



Today’s Class
• Examples of problems with hidden or latent variables

– Untrustworthy annotators
– Pixel segmentation
– Topic models

• Background
– Maximum Likelihood Estimation
– Probabilistic Inference

• Dealing with Latent Variables (latent = hidden, not observed)
– EM algorithm, Bad annotator problem
– Hard EM



I have used EM in research and practice many times, e.g.

• Given multiple images and scene geometry, 
estimate true color of each floor map pixel
– Latent variables: which pixels are occluded

• For an audio clip of music with background 
noise, which extracted sound signatures are 
due to music vs background noise?
– Latent variables: whether each extracted sound 

signature at a given time is due to background 
or music

• Mixture of Gaussian probability model (next 
class) 



Bad Annotator Problem
You hire annotators to label attractiveness of images. Some 
annotators do their best. Some are “bad” and assign 
random scores. 
Goal: We want to estimate the average score of good 
annotators for each image

Assumptions
1. Bad annotators are always bad. Good annotators are always 

good.
2. For each image 𝑖𝑖, the scores from good annotators follow a 

Gaussian distribution 𝑠𝑠𝑖𝑖𝑖𝑖~𝑁𝑁(𝜇𝜇𝑖𝑖 ,𝜎𝜎2)

𝑃𝑃 𝑠𝑠𝑖𝑖𝑖𝑖 𝑧𝑧𝑖𝑖 = 1 =
1
2𝜋𝜋𝜎𝜎

exp(−
1
2
𝑠𝑠𝑖𝑖𝑖𝑖 − 𝜇𝜇𝑖𝑖 2
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3. The scores from bad annotators always follow a uniform 
distribution

𝑃𝑃 𝑠𝑠𝑖𝑖𝑖𝑖 𝑧𝑧𝑖𝑖 = 0 = 1 (scores range from 0 to 1)

Notation
𝑠𝑠𝑖𝑖𝑖𝑖 ∈ [0,1]: score for image 𝑖𝑖 by 
annotator a 

𝑧𝑧𝑖𝑖 ∈ {0,1}: whether annotator 𝑎𝑎 
is good

𝜇𝜇𝑖𝑖: true mean score for image 𝑖𝑖

𝜎𝜎: standard deviation of true 
scores, same for each image

𝜋𝜋𝑧𝑧: 𝑃𝑃(za = 1), prior probability 
that annotator is good 



Latent Variable Problems: Bad Annotator
Challenge: Figure out which annotators are good and 
estimate the true mean score for each image

Three steps:
1. If we knew which annotators were good, how would we 

estimate the score distribution for each image? 
2. Given the distribution parameters, how do we compute 

the likelihood that an annotator is good?
3. How can we get annotator labels and score models at 

once?

i=0 i=1 i=2 …
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Maximum Likelihood Estimation

1. If we knew which annotators were good, how would 
we estimate the score distribution for each image? 

Scores are independent of 
each other, given the model

Model is Gaussian

Solve for parameters that 
maximize the data likelihood

data

parameters



Easier to take derivative of sum of 
logs than a product, and f(x) and 
log(f(x)) are always maximized by the 
same x

To find max wrt a variable, set the 
partial derivative wrt that variable to 0

Do the math

Solve. M is number of “a”s

Solving for mean



Solving for standard deviation

Now take partial derivative wrt 
sigma. Since sigma is the same 
for all images, we are now 
summing over all images and 
annotations

Solution is average squared 
difference from mean

2



Applying MLE in code
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Assuming all the scores are 
good (when they are not)

(Green = true; red = prediction)

If we knew somehow which 
annotators are good

(Green = true; red = prediction)



Probabilistic Inference

2. Given the distribution parameters, how do we compute 
the likelihood that an annotator is good?

Good annotators
(red, orange, blue) Bad annotators

(green, purple)

Note: In this example, I know what 
is good and bad because I made 
up the scores, but otherwise it 
wouldn’t be obvious



Probabilistic Inference (general case)
Given the model parameters, compute the likelihood that a 
particular model generated a sample

component or label

),|( θnn xmzp = zn is the unknown label of data point xn

General strategy: We know 𝑝𝑝 𝑥𝑥𝑛𝑛 𝑧𝑧𝑛𝑛 = 0,𝜃𝜃  and 𝑝𝑝 𝑥𝑥𝑛𝑛 𝑧𝑧𝑛𝑛 = 1,𝜃𝜃  and 𝑝𝑝(𝑧𝑧𝑛𝑛= 1|𝜃𝜃)

We want to know 

Use probability rules to get from what we know to what we want to know.

),|( θnn xmzp =



Probabilistic Inference (general case)
Given the model parameters, compute the likelihood that a 
particular model generated a sample

component or label
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Probabilistic Inference (general case)
Given the model parameters, compute the likelihood that a 
particular model generated a sample

component or label

( )
( )θ

θ
θ

|
|,),|(

n

mnn
nn xp

xmzpxmzp =
==

( )
( )∑ =
=

=

k
knn

mnn

xkzp
xmzp

θ
θ
|,

|,
Law of total probability



Probabilistic Inference (general case)
Given the model parameters, compute the likelihood that a 
particular model generated a sample

component or label
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Example: Inference for Annotator Labels

𝑝𝑝 𝑧𝑧𝑖𝑖 = 1 𝑠𝑠𝑖𝑖 ,𝜃𝜃 =
𝑝𝑝 𝑠𝑠𝑖𝑖 𝑧𝑧𝑖𝑖 = 1,𝜃𝜃 𝑝𝑝(𝑧𝑧𝑖𝑖 = 1,𝜃𝜃)

𝑝𝑝 𝑠𝑠𝑖𝑖 𝑧𝑧𝑖𝑖 = 1,𝜃𝜃 𝑝𝑝 𝑧𝑧𝑖𝑖 = 1,𝜃𝜃 + 𝑝𝑝 𝑠𝑠𝑖𝑖 𝑧𝑧𝑖𝑖 = 0,𝜃𝜃 𝑝𝑝 𝑧𝑧𝑖𝑖 = 0,𝜃𝜃

𝑝𝑝 𝑠𝑠𝑖𝑖 𝑧𝑧𝑖𝑖 = 1,𝜃𝜃 = ∏𝑖𝑖𝑁𝑁(𝑠𝑠𝑖𝑖𝑖𝑖, 𝜇𝜇𝑖𝑖 ,𝜎𝜎) (normal pdf)
𝑝𝑝 𝑠𝑠𝑖𝑖 𝑧𝑧𝑖𝑖 = 0,𝜃𝜃 = ∏𝑖𝑖 1 (uniform)
𝑝𝑝 𝑧𝑧𝑖𝑖 = 1, 𝜃𝜃 = 𝜋𝜋𝑧𝑧 (prior)



Dealing with Latent Variables

3. How can we get annotator labels and score models at 
once?

Image Index
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(Green = true; red = prediction)

Good annotators: 0, 1, 3

Estimated scores



2 minute break
• After the break:

– Intuitive solution to solving for parameters and latent variables
– Derive that the intuitive solution is correct
– Demo for the untrustworthy annotator problem

Dall-E3 The three 
bears, little red 
riding hood, her 
grandmother, and 
a dragon at a tea 
party with a huge 
cake in a hotel with 
people in the 
background.  
Digital art.

A cat looks on in shock 
as a person on hands 
and knees eats the 
cat's food. Digital art.



Simple solution
1. Initialize parameters

2. Compute the probability of each hidden variable given the 
current parameters

3. Compute new parameters for each model, weighted by 
likelihood of hidden variables

4. Repeat 2-3 until convergence



Annotator Problem: Simple Solution
1. Initialize parameters

- Estimate parameters assuming all annotators are good

2. Compute likelihood of hidden variables for current 
parameters 𝑤𝑤𝑖𝑖 = 𝑝𝑝(𝑧𝑧𝑖𝑖 = 1|𝒔𝒔𝑖𝑖,𝝁𝝁,𝜎𝜎,𝜋𝜋𝑧𝑧)

3. Estimate new parameters for each model, weighted by 
likelihood 

^



Expectation Maximization (EM) Algorithm

( )







= ∑

z
zx θθ

θ
|,logargmaxˆ pGoal: 

[ ]( ) ( )[ ]XfXf EE ≥
Jensen’s Inequality

Log of sums is intractable

for concave functions f(x)

So we maximize the lower bound by maximizing the 
log of sums instead of sum of logs!



Expectation Maximization (EM) Algorithm

1. E-step: compute 

2. M-step: solve
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Expectation Maximization (EM) Algorithm

1. E-step: compute 

2. M-step: solve
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z
zx θθ

θ
|,logargmaxˆ pGoal: [ ]( ) ( )[ ]XfXf EE ≥

log of expectation of p(x|z) over p(z)

expectation of log of P(x|z) over estimated P(z)



EM for Annotator 
Problem: E-Step These sums over all 

combinations of z and 
joint probabilities are 

complicated!

First, let’s expand the 
joint probabilities



EM for Annotator 
Problem: E-Step

Write joint as product of 
individual

Log of product is sum of 
logs

Now I want to deal 
with this joint z and 
complex sum over z



EM for Annotator 
Problem: E-Step

Rearrange sums

Make it clear that sum 
over z is a series of sums

Rearrange again, pulling 
out the sum over za This lets me marginalize 

out the other z’s!



EM for Annotator 
Problem: E-Step

Now, plug in the 
functions for score 
probabilities of good and 
bad annotators

And calculate how to get 
P(z|s), as we did before



EM for Annotator 
Problem: E-Step

Writing out the 
inference 
computations



EM for Annotator 
Problem: M-Step

Calculate parameters that 
maximize the expression from 
the E-step, given our current 
estimates of P(z|s)

This is very similar to the MLE 
derivation

�𝜇𝜇𝑖𝑖

�𝜎𝜎

�𝜋𝜋𝑧𝑧



EM Annotator Problem Demo

https://colab.research.google.com/drive/1sutnFg-xe-
IjgiY8qAJt5USf2MEBZS2L?usp=sharing

https://colab.research.google.com/drive/1sutnFg-xe-IjgiY8qAJt5USf2MEBZS2L?usp=sharing
https://colab.research.google.com/drive/1sutnFg-xe-IjgiY8qAJt5USf2MEBZS2L?usp=sharing


EM Algorithm

• Maximizes a lower bound on the data likelihood at each iteration

• Each step increases the data likelihood
– Converges to local maximum

• Common tricks to derivation
– Find terms that sum or integrate to 1
– Lagrange multiplier to deal with constraints

• Although the derivation is long, it pretty much always boils down to iteratively 
1. Estimating likelihood of latent variables given parameters
2. Computing estimates of parameters that are weighted by the latent variable 

likelihoods



“Hard EM”
• Same as EM except compute z* as most likely values for hidden 

variables

• K-means is an example

• Advantages
– Simpler: can be applied when cannot derive EM
– Sometimes works better if you want to make hard predictions at the end

• But
– Generally, pdf parameters are not as accurate as EM



Notes about homeworks
• HW 2: due Feb 19

– Problem 1: PCA (lecture Jan 30)
– Problem 2: Linear Classification, parameter selection (lectures Feb 1, Feb 6)
– Problem 3: Linear Regression (lecture Feb 1)
– Stretch goals: optional, up to 60 points

• HW 3: due Mar 4
– Problem 1: Probability estimation and inference (lectures Feb 8-15)
– Problem 2: Robust Estimation of Salary Data (lectures Feb 13, Feb 15, Feb 20)

• Some salaries are “true reports” coming from some distribution based on university and 
experience; others are “fake reports” that are generated uniformly at random

– Stretch goals: optional, up to 60 points

• Remember, you only need a total of 500 (3 credit) or 625 (4 credit) points, which 
can be earned through HWs, final project, and participation 



What to remember

• EM is a widely applicable algorithm 
to solve for latent variables and 
parameters that make the 
observed data likely

• While derivation is long and 
somewhat complicated, the 
application is simple

• We’ll see other examples of EM 
use in mixture of Gaussian and 
topic models

(Green = true; red = prediction)

Good annotators: 0, 1, 3

Estimated scores



Next class

• Estimating probability density functions
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