Applied Machine Learning (CS 441) – Fall 2024

  

  Instructor:  Derek Hoiem

 

  Lectures: Tues/Thurs 9:30-10:45, 1320 DCL

 

  Syllabus

  Lecture Recordings, ClassTranscribe

  Lecture Review Questions and Answers

  CampusWire Discussion (sign-up link/code: 6106)

  Canvas Submission (Gradescope code: YR2E43)

 

  Textbook: Applied Machine Learning by David Forsyth

                                                                                                           

  

   Assignments

HW 1 – Instance-based Methods (Sep 16)

HW 2 – PCA and Linear Models (Sep 30)

HW 3 – PDFs and Outliers (Oct 14)

HW 4 – Trees and MLPs (Nov 4)

HW 5 – Deep Learning and Applications (Nov 18)

Final Project (Dec 15)

 

 

 

 

 

 

  Class Schedule   (subject to change)

Date

Topic

Link

Reading/Notes

Aug 27 (Tues)

Introduction

ppt ; pdf

Jupyter notebook tutorial vid ipynb cc

Numpy tutorial vid cc

Linear algebra tutorial vid  cc

 

Fundamentals of Learning

 

 

Aug 29 (Thurs)

K-NN Classification, Data Representation

ppt ; pdf

AML Ch 1.1-1.2

Sep 3 (Tues)

K-NN Regression, Generalization

ppt ; pdf

AML Ch 1.1-1.2

Sep 5 (Thurs)

Search and Clustering

ppt ; pdf

AML Ch 8

Sep 9 (Mon)

Probability/Background Review (9pm)

ppt ; pdf

PrairieLearn Mini-hw

Sep 10 (Tues)

Dimensionality reduction: PCA, embeddings

ppt ; pdf

AML Ch 5, 6, 19

Sep 12 (Thurs)

Linear regression, regularization

ppt ; pdf

 AML Ch 10-11

Sep 16 (Mon)

HW 1 (Instance-based Methods) due

 

 

Sep 17 (Tues)

Linear classifiers: logistic regression, SVM

ppt ; pdf

AML Ch 11.3, 2.1

Sep 19 (Thurs)

Naïve Bayes Classifier

ppt ; pdf

AML Ch 2

Sep 24 (Tues)

EM and Latent Variables

ppt ; pdf

AML Ch 9

Sep 26 (Thurs)

Density estimation: MoG, Hists, KDE

ppt ; pdf

AML Ch 9

Sep 30 (Mon)

HW 2 (PCA and Linear Models) due

 

 

Oct 1 (Tues)

Outliers and Robust Estimation

Derek away Sept 27 to Oct 5 for ECCV

ppt ; pdf

recording 

Linear fit demo (Matlab)

Oct 3-6

Exam 1 at CBTF

Optional Q&A w/ TAs on Oct 3 in lecture

pdf

recording

practice questions ; ref sheet

Oct 8 (Tues)

Decision Trees

ppt ; pdf

AML Ch 2

Oct 10 (Thurs)

Ensembles and Random Forests

ppt ; pdf

AML Ch 2

 

Deep Learning

 

 

Oct 14 (Mon)

HW 3 (PDFs and Outliers)

 

 

Oct 15 (Tues)

Stochastic Gradient Descent 

ppt ; pdf

AML Ch 2.1; Pegasos (Shalev-Shwartz et al. 2007)

Oct 17 (Thurs)

MLPs and Backprop

ppt ; pdf

AML 16

Oct 22 (Tues)

CNNs and Keys to Deep Learning

ppt ; pdf

AML Ch 17-18, ResNet (He et al. 2016)

Oct 24 (Thurs)

Deep Learning Optimization and Computer Vision

ppt ; pdf

 PyTorch Tutorial from CS444

Oct 29 (Tues)

Words and Attention

ppt ; pdf

Sub-word Tokenization (Sennrich et al. 2016)

Word2Vec (Mikolov et al. 2013)

Attention is all you need (Vaswani et al. 2017)

Transformer tutorial/walkthrough

Oct 31 (Thurs)

Transformers in Language and Vision

ppt ; pdf

BERT (Devlin et al. 2019)

ViT (Dosovitskiy et al. 2021)

Unified-IO (Lu et al. 2022)

Nov 4 (Mon)

HW 4 (Trees and MLPs) due

 

 

Nov 5 (Tues)

Foundation Models: CLIP and  GPT-3

ppt ; pdf

CLIP (Radford et al. 2021)

Nov 7-10

Exam 2 at CBTF (Optional review on Nov 7)

 

 

Applications

 

 

Nov 12 (Tues)

Ethics and Impact of AI

ppt ; pdf

Nov 14 (Thurs)

Bias in AI, Fair ML

ppt ; pdf

 

Nov 18 (Mon)

HW 5 (Deep Learning and Applications) due

 

 

Nov 19 (Tues)

Audio and 1D Signals

Guest speaker: Minje Kim

pdf

Audio Deep Learning

Nov 21 (Thurs)

Building and Deploying ML

Guest speaker: Chenxi Yu (State Farm)

 

(no slides)

Nov 23-Dec 1

Fall Break

 

 

Dec 3 (Tues)

Reinforcement Learning

pdf ; ppt ; recording

Dec 5 (Thurs)

Review, summary, looking forward

pdf ; ppt

 

Dec 5-10

Exam 3 at CBTF

 

 

Dec 15 (Sun)

Final Project due (cannot be late)