Lectures

Lecture Schedule

Week

Day

Date

Topic

Due

1

R

26-Aug

Signal Processing Review (PDF)

2

T

31-Aug

Linear Prediction (PDF)

R

2-Sep

LPC-10 Speech Coding (PDF)

3

T

7-Sep

Linear Algebra Review (PDF; onenote; ipynb; html)

MP1

R

9-Sep

Multidimensional Signal Processing (PDF; onenote; ipynb; html)

4

T

14-Sep

Optical Flow (PDF; novideo)

R

16-Sep

Image Interpolation (ipynb; HTML)

HW2

5

T

21-Sep

Multivariate Gaussians (PPTX; PDF; onenote)

MP2

R

23-Sep

Exam 1 Review (PDF)

6

T

28-Sep

Exam 1

Exam 1

R

30-Sep

Gaussian and Mixture Classifiers (PDF)

7

T

5-Oct

PCA (PDF)

HW3

R

7-Oct

Expectation Maximization (PDF)

8

T

12-Oct

Hidden Markov Models (PDF; onenote)

MP3

R

14-Oct

Baum-Welch Algorithm (PDF; onenote)

9

T

19-Oct

Numerical Issues (PDF)

HW4

R

21-Oct

Neural Nets (PDF)

10

T

26-Oct

Backpropagation (PDF)

MP4

R

28-Oct

Exam 2 Review (PDF; Problem 3 solution)

11

T

2-Nov

Exam 2

Exam 2

R

4-Nov

Convolutional Neural Networks (PDF; forward.gif; backward.gif; onenote )

12

T

9-Nov

Faster RCNN (PDF )

HW5

R

11-Nov

Partial and Total Derivatives (PDF; onenote)

13

T

16-Nov

RNN (PDF; onenote)

MP5 due Wednesday

R

18-Nov

LSTM (PDF)

14

T

30-Nov

Pytorch Intro & MP6 Walkthrough

HW6

R

2-Dec

Final Review (PDF; onenote1; onenote2 )

15

T

7-Dec

Final Review (note1; note2; note3; note4; note5)

MP6 due Wednesday

13-Dec

Final Exam

Final