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Basics of DSP: Filtering

y [n] =
∞∑

m=−∞
h[m]x [n −m]

Y (z) = H(z)X (z)
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Finite Impulse Response (FIR)

y [n] =
N−1∑
m=0

h[m]x [n −m]

The coefficients, h[m], are chosen in order to optimally position
the N − 1 zeros of the transfer function, rk , defined according to:

H(z) =
N−1∑
m=0

h[m]z−m = h[0]
N−1∏
k=1

(
1− rkz

−1)
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Infinite Impulse Response (IIR)

y [n] =
N−1∑
m=0

bmx [n −m] +
M−1∑
m=1

amy [n −m]

The coefficients, bm and am, are chosen in order to optimally
position the N − 1 zeros and M − 1 poles of the transfer function,
rk and pk , defined according to:

H(z) =

∑N−1
m=0 bmz

−m

1−
∑M−1

m=1 amz
−m

= b0

∏N−1
k=1

(
1− rkz

−1)∏M−1
k=1 (1− pkz−1)

STABILITY: If any of the poles are on or outside the unit circle
(|pk | ≥ 1), then y [n]→∞, even with finite x [n].
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Convolutional Neural Net = Nonlinear(FIR)

Image CC-SA-4.0 by Aphex34, https://commons.wikimedia.org/wiki/File:Conv_layer.png

https://commons.wikimedia.org/wiki/File:Conv_layer.png
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Convolutional Neural Net = Nonlinear(FIR)

ŷ [n] = g

(
N−1∑
m=0

w [m]x [n −m]

)
The coefficients, w [m], are chosen to minimize some kind of error.
For example, suppose that the goal is to make ŷ [n] resemble a
target signal y [n]; then we might use

E =
1

2

N∑
n=0

(ŷ [n]− y [n])2

and choose

w [n]← w [n]− η dE

dw [n]
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Recurrent Neural Net (RNN) = Nonlinear(IIR)

Image CC-SA-4.0 by Ixnay,

https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg

https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg
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Recurrent Neural Net (RNN) = Nonlinear(IIR)

h[n] = g

(
x [n] +

M−1∑
m=1

w [m]h[n −m]

)
The coefficients, w [m], are chosen to minimize the error. For
example, suppose that the goal is to make h[n] resemble a target
signal y [n]; then we might use

E =
1

2

N∑
n=0

(h[n]− y [n])2

and choose

w [m]← w [m]− η dE

dw [m]
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Partial Derivatives

In order to do back-propagation in recurrent neural networks, it
will be important to distinguish between partial and total
derivatives. Unfortunately, these are not defined very clearly in
introductory calculus classes.
The standard definition of the partial derivative of f (~x) w.r.t. x1,
where ~x = [x1, . . . , xD ]T , is

∂f

∂x1
= lim

ε→0

(
f (x1 + ε, x2, . . .)− f (x1, x2, . . .)

ε

)
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Partial Derivatives

∂f

∂x1
= lim

ε→0

(
f (x1 + ε, x2, . . .)− f (x1, x2, . . .)

ε

)
In other words, ∂f

∂xk
is defined as the derivative of f w.r.t. xk while

holding all of the other xd , for 1 ≤ d ≤ D, constant.
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Total Derivatives

The partial derivative and total derivative differ if some of the
other elements of the vector ~x might depend on xk . For example,
suppose that each xj is a function of xi for i ≤ j :

xj = gj(x1, . . . , xj−1)

Then the total derivative allows each of the xj , for j > k , to vary
as xk varies:

df

dx1
= lim

ε→0

(
f (x1 + ε, x2(x1 + ε), . . .)− f (x1, x2(x1), . . .)

ε

)
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Partial and Total Derivatives

The partial derivative of f w.r.t. xk holds all of the other
variables constant, while varying only xk . The other variables
are held constant ignoring any dependency they otherwise
would have on xk :

∂f

∂x1
= lim

ε→0

(
f (x1 + ε, x2(x1), . . .)− f (x1, x2(x1), . . .)

ε

)
The total derivative takes into account the effect that
varying xk might have on all the other variables:

df

dx1
= lim

ε→0

(
f (x1 + ε, x2(x1 + ε), . . .)− f (x1, x2(x1), . . .)

ε

)
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Partial and Total Derivatives

So far, we’ve pretended that, when we say “holding all other
variables constant,” we know what that means.

In a neural network, there are lots of implicit variables, that
you can calculate if you want to.

When you say “holding all other variables constant,” it is
necessary to specify exactly which other variables you mean.
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Review: Excitation and Activation

The activation of a hidden node is the output of the
nonlinearity (for this reason, the nonlinearity is sometimes
called the activation function). For example, in a
fully-connected network with outputs ŷl , weights ~w , bias b,
nonlinearity g(), and hidden node activations ~h, the activation
of the l th output node is

ŷl = g

(
bl +

p∑
k=1

wlkhk

)

The excitation of a hidden node is the input of the
nonlinearity. For example, the excitation of the node above is

ξl = bl +

p∑
k=1

wlkhk
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Backprop = Derivative w.r.t. Excitation

The excitation of a hidden node is the input of the
nonlinearity. For example, the excitation of the node above is

ξl = bl +

p∑
k=1

wlkhk

The gradient of the error w.r.t. the weight is

dL
dwlk

= εlhk

where εl is the derivative of the error w.r.t. the l th excitation:

εl =
dL
del
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Backprop for Fully-Connected Network

Suppose we have a fully-connected network, with inputs ~x , weight
matrices W (1) and W (2), nonlinearities g() and h(), and output ŷ :

ξ
(1)
k = b

(1)
k +

∑
j

w
(1)
kj xj , hk = g

(
ξ
(1)
k

)
ξ
(2)
l = b

(2)
l +

∑
k

w
(2)
lk hk , ŷl = h

(
ξ
(2)
l

)
Then the back-prop gradients are the derivatives of L with respect
to the excitations at each node:

dL
dw

(2)
lk

= εlhk , εl =
dL
dξ

(2)
l

dL
dw

(1)
kj

= δkxj , δk =
dL
dξ

(1)
k
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Back-Prop Example

Suppose we have the following network:

h = cos(x)

ŷ =
√

1 + h2

Suppose we need dŷ
dx . We find it as

dŷ

dx
=

dŷ

dh

∂h

∂x
=

(
h√

1 + h2

)
(− sin(x))
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Back-Prop Example

Suppose we have the following network:

h0 = cos(x)

h1 =
1√
2

(
h30 + sin(x)

)
ŷ =

√
h20 + h21

What is dŷ
dx ? How can we compute that?
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Flow Graphs

x

h0

h1

ŷ

We often show the flow graph for the chain rule using bubbles and
arrows, as shown above. You can imagine the chain rule as taking
a summation along any cut through the flow graph—for example,
the dashed line shown above. You take the total derivative from ŷ
to the cut, and then the partial derivative from there back to x .

dŷ

dx
=

N−1∑
i=0

dŷ

dhi

∂hi
∂x
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Flow Graphs

x

h0

h1

ŷ

d ŷ

dx
=

N−1∑
i=0

dŷ

dhi

∂hi
∂x

For each hi , we find the total derivative of ŷ w.r.t. hi , multiplied
by the partial derivative of hi w.r.t. x .
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Back-Prop Example

First, we find dŷ
dh1

:

ŷ =
√

h20 + h21

dŷ

dh1
=

h1√
h20 + h21
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Back-Prop Example

x

h0

h1

ŷ

Second, back-prop to find dŷ
dh0

:

dŷ

dh0
=

∂ŷ

∂h0
+

dŷ

dh1

∂h1
∂h0

=
1√

h20 + h21

(
h0 +

(
3√
2

)
h20h1

)
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Back-Prop Example

x

h0

h1

ŷ

Third, back-prop to find dŷ
dx :

dŷ

dx
=

dŷ

dh1

∂h1
∂x

+
dŷ

dh0

∂h0
∂x

=

 h1√
h20 + h21

 cos(x)−


(
h0 +

(
3√
2

)
h20h1

)
√
h20 + h21

 sin(x)
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Back-Prop and Partial Derivativees

Suppose we have a neural net, defined by

ξ
(l+1)
k =

∑
j

w
(l+1)
k,j σ

(
ξ
(l)
j

)
then, if we define

δ
(l)
j =

∂L
∂ξ

(l)
j

we can compute it as

δ
(l)
j =

∑
k

δ
(l+1)
k

∂ξ(l+1)
k

∂ξ
(l)
j


Here, the partial-derivative sign ∂ means that we hold constant all
other ξ variables at the same layer. We’re obviously not holding
constant all excitations at the next layer, because those are the
things over which we compute the back-prop.
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Conclusions

Back-Prop, in general, is just the chain rule of calculus:

dL
dw

=
N−1∑
i=0

dL
dhi

∂hi
∂w

Convolutional Neural Networks are the nonlinear version of an
FIR filter. Coefficients are shared across time steps.

Recurrent Neural Networks are the nonlinear version of an IIR
filter. Coefficients are shared across time steps. Error is
back-propagated from every output time step to every input
time step.
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Written Example

Consider a set of variables (u, v ,w , x , y , z) with the following
relationships:

u = εu

v = 0.1u + εv

w = 0.1v + 0.1u + εw

x = 0.1w + 0.1v + 0.1u + εx

y = 0.1x + 0.1w + 0.1v + 0.1u + εy

z = 0.1y + 0.1x + 0.1w + 0.1v + 0.1u + εz

1 Draw a flow-graph.

2 Calculate the gradient of z w.r.t. the vector ~φ = [u, v ]T .
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