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Assigned: Wednesday, 11/3/2021; Due: Tuesday, 11/9/2021
Reading: Christopher Bishop, Neural Networks for Pattern Recognition, chapters 3-4

Problem 5.1

A “spiral network” is a brand new category of neural network, invented just for this homework. It is a
network with a scalar input variable xi, a scalar target variable yi, and with the following architecture:

hi,j =

{
xi j = 1
g (ξi,j) 2 ≤ j ≤M , ξi,j =

j−1∑
k=1

wj,khi,k

Suppose that the network is trained to minimize the sum of the per-token squared errors E = 1
2

∑n
i=1(hi,M −

yi)
2. The error gradient can be written as

∂E
∂wj,k

=

n∑
i=1

δi,jhi,k

Find a formula that can be used to compute δi,j , for all 2 ≤ j ≤ M , in terms of yi, hij = g(ξij), and/or

g′(ξij) = dg
dξij

.

Problem 5.2

The back-prop of a convolution layer is correlation. What about if correlation is the forward-prop
rule? Let’s find out. Consider a “correlational” layer, given as follows, where h[m1,m2] is the hidden node
activation of the previous layer, and w[m1,m2] are the network weights:

ξ[n1, n2] = w[−n1,−n2] ∗ h[n1, n2]

=
∑
m1

∑
m2

w[m1 − n1,m2 − n2]h[m1,m2]

Suppose the loss, L, is some function whose derivatives with respect to ξ[n1, n2], δ[n1, n2] = dL
dξ[n1,n2]

, are

known. Find dL
dh[m1,m2]

and dL
dw[k1,k2]

in terms of δ[n1, n2].

Problem 5.3

Consider the following nonlinearity, which might be appropriate at the output layer of a classifier. This
nonlinearity is sometimes called the “softcount” nonlinearity, and is closely related to the more common
“softmax.” The softmax and softcount share the following property: the input, ~ξ, and output, ~h are both
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assumed to be vectors, ~ξ = [ξ1, . . . , ξNY
]T and ~h = [h1, . . . , hNY

]T . The kth output of the nonlinearity
depends on all of the inputs, not just on the kth input:

hk = gk(~ξ) =
eξk

max1≤`≤NY
eξ`

Suppose that the training target, y, is an integer, 1 ≤ y ≤ NY , and the loss is the categorical cross-entropy
function:

L = −
NY∑
k=1

1[y = k] lnhk

where

1[P ] =

{
1 P is true

0 otherwise

Find dL
dξk

, for each of the following four cases:

(a) k = y and k = argmax` e
ξ`

(b) k = y but k 6= argmax` e
ξ`

(c) k 6= y but k = argmax` e
ξ`

(d) k 6= y and k 6= argmax` e
ξ`

Express your answer in terms of h`, for any 1 ≤ ` ≤ NY including possibly ` = k, ` = y, or ` = argmax eξ` .
Do not express your answer in terms of ξk.

Problem 5.4

Consider a two-layer regression network with Nx input nodes, Nh hidden nodes, and Ny output nodes:

~f(~x) = W (2)σ
(
W (1)~x

)
(5.4-1)

Suppose that there are Ni training tokens, D = {(~x1, ~yi), . . . , (~xNi , yNi)}, and the loss is mean-squared error:

L =
1

Ni

Ni∑
i=1

‖~f(~xi)− ~yi‖22 (5.4-2)

• How many multiply-accumulate operations are required to calculate the gradients ∇W (2)L and ∇W (2)L
using forward-propagation and back-propagation?

• Suppose you attempted to find these gradients using a forward-Euler approximation,

∂L
∂w

(l)
k,j

≈ 1

ε

(
L(w

(l)
k,j + ε)− L(w

(1)
k,j)
)
, (5.4-3)

for some suitably small value of ε. How many multiply-accumulate operations would be required to
compute ∇W (2)L and ∇W (2)L using Eq. (5.4-3)?


