Project

# Title Team Members TA Documents Sponsor
56 Smart AC Units
Kevin Zhang
Vineeth Kalister
Xavier Oliva
Douglas Yu design_document1.docx
design_document2.pdf
final_paper1.pdf
proposal2.pdf
proposal1.pdf
# TEAM MEMBERS:

Kevin Zhang - kevinhz2
Vineeth Kalister - vkalis2
Xavier Oliva - xoliva2

# **PROBLEM:**
In the United States, about a third of homes lack a central air conditioning system. While some homes are in climates where they do not need an air conditioning solution, the vast majority of other homes rely on window units for their air conditioning. This is especially true in communities with older homes, such as New York City and Boston. Many older homes use “dumb” wall-mounted AC units that are inefficient and manually set. We want to target these homes and make them more efficient through “smart” AC control units. Although there exist “smart” wall-mounted units, these are often equipped with proprietary solutions that work with few systems, or are expensive devices to modulate the voltage going inside the AC unit without changing the settings of the unit. With our Smart AC Unit system, we believe that we can accomplish a more efficient and equitable experience for those with window unit ACs and ensure optimal ease of access as well as a lower power bill. As the central air conditioning market advances in the technology available to make the air conditioning experience easier, such advances and improvements are lacking in homes that do not have central air conditioning. While there are systems in the market that allow you to have your central air conditioning system interact with voice assistants or other AI services, window unit users are stuck with simple knobs and switches. The few smart devices that do interface with window units are typically proprietary designs that work with specific higher priced designs or are devices that simply modulate voltage going into the AC system.


# SOLUTION:
Our proposal is a multi-part system combining temperature sensors, servo motors, and central control units to allow for wall-mount ACs to be automatically controlled through an application on one’s smart device. The device will be able to latch on top of the knobs of a window unit AC and, with the help of the User Application available on their mobile device, be able to adjust the knobs remotely to the settings of the user’s choosing.
The main system relies on sensor units, control units, and mobile devices. The prototype device will be tested on a 5000 BTU Arctic King window air conditioner.

# SOLUTION COMPONENTS:
Air Conditioner System (Smart AC device)
## Power Unit
The Smart AC itself will need to be powered with enough voltage to be able to power the two motors responsible for turning the knobs on an 5,000 BTU Arctic King window air conditioner as well the temperature and air quality sensors.

## Sensor Unit

The Smart AC device will be equipped with a temperature sensor in order to read the temperature of the room, and thus, regulate the temperature to the temperature selected by the User Application. The Smart AC device will also be equipped with an air quality sensor which enables the air quality of the room to be read and communicated to the user through the User Application.

## Control Unit

The control unit of the Smart AC device system will be capable of changing the settings of both the temperature and cooling knobs of the Arctic King window air conditioner. If the temperature set by the User Application is higher or lower than that measured by the Sensor Unit, the Control Unit is responsible for adjusting the air conditioner settings to ensure that the room temperature stays constant.

** Mobile Device System (User Application)**
## UI Unit
The user applications contain all the necessary features to read the current room temperature, turn on/off the AC system, change and schedule temperatures, change fan speeds, etc.
## Control Unit
The user application will be able to communicate with the Smart AC device via bluetooth and/or Wi-Fi.

CRITERIA FOR SUCCESS:
- The AC Unit can be controlled and changed
- The sensor unit can accurately read the current room temperature
- Mobile Devices able to communicate with the AC System
- Change AC temperature whenever and wherever via one’s smart device
- Automatically set time ranges for AC use to increase the efficiency of the unit

Recovery-Monitoring Knee Brace

Dong Hyun Lee, Jong Yoon Lee, Dennis Ryu

Featured Project

Problem:

Thanks to modern technology, it is easy to encounter a wide variety of wearable fitness devices such as Fitbit and Apple Watch in the market. Such devices are designed for average consumers who wish to track their lifestyle by counting steps or measuring heartbeats. However, it is rare to find a product for the actual patients who require both the real-time monitoring of a wearable device and the hard protection of a brace.

Personally, one of our teammates ruptured his front knee ACL and received reconstruction surgery a few years ago. After ACL surgery, it is common to wear a knee brace for about two to three months for protection from outside impacts, fast recovery, and restriction of movement. For a patient who is situated in rehabilitation after surgery, knee protection is an imperative recovery stage, but is often overlooked. One cannot deny that such a brace is also cumbersome to put on in the first place.

--------

Solution:

Our group aims to make a wearable device for people who require a knee brace by adding a health monitoring system onto an existing knee brace. The fundamental purpose is to protect the knee, but by adding a monitoring system we want to provide data and a platform for both doctor and patients so they can easily check the current status/progress of the injury.

---------

Audience:

1) Average person with leg problems

2) Athletes with leg injuries

3) Elderly people with discomforts

-----------

Equipment:

Temperature sensors : perhaps in the form of electrodes, they will be used to measure the temperature of the swelling of the knee, which will indicate if recovery is going smoothly.

Pressure sensors : they will be calibrated such that a certain threshold of force must be applied by the brace to the leg. A snug fit is required for the brace to fulfill its job.

EMG circuit : we plan on constructing an EMG circuit based on op-amps, resistors, and capacitors. This will be the circuit that is intended for doctors, as it will detect muscle movement.

Development board: our main board will transmit the data from each of the sensors to a mobile interface via. Bluetooth. The user will be notified when the pressure sensors are not tight enough. For our purposes, the battery on the development will suffice, and we will not need additional dry cells.

The data will be transmitted to a mobile system, where it would also remind the user to wear the brace if taken off. To make sure the brace has a secure enough fit, pressure sensors will be calibrated to determine accordingly. We want to emphasize the hardware circuits that will be supplemented onto the leg brace.

We want to emphasize on the hardware circuit portion this brace contains. We have tested the temperature and pressure resistors on a breadboard by soldering them to resistors, and confirmed they work as intended by checking with a multimeter.

Project Videos