Project

# Title Team Members TA Documents Sponsor
74 Bike Theft Lock & Chain Detector
Jonathan Lee
Natasha Sherlock
Zhuoyuan Li
Tianxiang Zheng design_document2.pdf
final_paper1.pdf
photo1.jpg
photo2.jpg
photo3.jpg
presentation1.pdf
presentation2.pdf
proposal2.docx
proposal1.pdf
# BIKE THEFT LOCK & CHAIN DETECTOR (UPDATED)

Team Members:

- Natasha Sherlock (NNS5)

- Jonathan Lee (JCL4)

- Open Slot

# PROBLEM
In the Champaign-Urbana area, it is estimated that around 856-1070 bikes are stolen each year (bikelab.com), with most perpetrators going unapprehended and missing bikes seldom recovered. Bike theft often goes unnoticed, especially if the crime occurs at night or with few witnesses.

# SOLUTION

The proposed solution is a cable bike lock that detects when the cable is cut by passing current through the cable and building a sensor to detect an open circuit. When the cable is cut, our cameras positioned on the cable and bike will record images that may potentially identify the criminal. The cable will also send out a signal to an alarm, as well as relay all this information to the user via bluetooth/Wifi connection.

# SOLUTION COMPONENTS

## SUBSYSTEM 1: OPEN CIRCUIT DETECTION

This system will pass a small current through the cable, using the cable and analog components to create a circuit. When the cable gets cut, the circuit would open and this would send a signal to the microcontroller indicating that theft is taking place.

## SUBSYSTEM 2: IMAGE CAPTURING VIA CAMERA

Once the microcontroller detects the open circuit, the camera modules connected to the microcontroller will take an image that the user will be able to receive via bluetooth connection, potentially providing key evidence to identify the perpetrator.

## SUBSYSTEM 3: SOUND ALARM

When the inductance is changed, the microcontroller should send out a signal to electronic alarm devices to alert the user or anyone nearby to someone trying to cut through the cable. The user will then receive a notification on their phone with an option to turn off the alarm, or the alarm will sound for a set amount of time.

# CRITERION FOR SUCCESS

Our device will be able to:

- Detect when the cable is cut
- Send a signal to sound an alarm when the cable is cut
- Take a picture as the theft is being attempted
- Relay the images and alarm sounding to the user's phone

Musical Hand

Ramsey Foote, Thomas MacDonald, Michelle Zhang

Musical Hand

Featured Project

# Musical Hand

Team Members:

- Ramesey Foote (rgfoote2)

- Michelle Zhang (mz32)

- Thomas MacDonald (tcm5)

# Problem

Musical instruments come in all shapes and sizes; however, transporting instruments often involves bulky and heavy cases. Not only can transporting instruments be a hassle, but the initial purchase and maintenance of an instrument can be very expensive. We would like to solve this problem by creating an instrument that is lightweight, compact, and low maintenance.

# Solution

Our project involves a wearable system on the chest and both hands. The left hand will be used to dictate the pitches of three “strings” using relative angles between the palm and fingers. For example, from a flat horizontal hand a small dip in one finger is associated with a low frequency. A greater dip corresponds to a higher frequency pitch. The right hand will modulate the generated sound by adding effects such as vibrato through lateral motion. Finally, the brains of the project will be the central unit, a wearable, chest-mounted subsystem responsible for the audio synthesis and output.

Our solution would provide an instrument that is lightweight and easy to transport. We will be utilizing accelerometers instead of flex sensors to limit wear and tear, which would solve the issue of expensive maintenance typical of more physical synthesis methods.

# Solution Components

The overall solution has three subsystems; a right hand, left hand, and a central unit.

## Subsystem 1 - Left Hand

The left hand subsystem will use four digital accelerometers total: three on the fingers and one on the back of the hand. These sensors will be used to determine the angle between the back of the hand and each of the three fingers (ring, middle, and index) being used for synthesis. Each angle will correspond to an analog signal for pitch with a low frequency corresponding to a completely straight finger and a high frequency corresponding to a completely bent finger. To filter out AC noise, bypass capacitors and possibly resistors will be used when sending the accelerometer signals to the central unit.

## Subsystem 2 - Right Hand

The right subsystem will use one accelerometer to determine the broad movement of the hand. This information will be used to determine how much of a vibrato there is in the output sound. This system will need the accelerometer, bypass capacitors (.1uF), and possibly some resistors if they are needed for the communication scheme used (SPI or I2C).

## Subsystem 3 - Central Unit

The central subsystem utilizes data from the gloves to determine and generate the correct audio. To do this, two microcontrollers from the STM32F3 series will be used. The left and right hand subunits will be connected to the central unit through cabling. One of the microcontrollers will receive information from the sensors on both gloves and use it to calculate the correct frequencies. The other microcontroller uses these frequencies to generate the actual audio. The use of two separate microcontrollers allows for the logic to take longer, accounting for slower human response time, while meeting needs for quicker audio updates. At the output, there will be a second order multiple feedback filter. This will get rid of any switching noise while also allowing us to set a gain. This will be done using an LM358 Op amp along with the necessary resistors and capacitors to generate the filter and gain. This output will then go to an audio jack that will go to a speaker. In addition, bypass capacitors, pull up resistors, pull down resistors, and the necessary programming circuits will be implemented on this board.

# Criterion For Success

The minimum viable product will consist of two wearable gloves and a central unit that will be connected together via cords. The user will be able to adjust three separate notes that will be played simultaneously using the left hand, and will be able to apply a sound effect using the right hand. The output audio should be able to be heard audibly from a speaker.

Project Videos