ECE 515/ME 540: Fall 2024 Lecture Schedule


The schedule will be updated and revised as the course progresses. Required readings from the course notes will be indicated on the left.

System modeling and analysis

Tue Aug 27
Ch. 1
Introduction and administrivia
State-space models
Linearization about an equilibrium point
Linearization about a trajectory
Thu Aug 29
Ch. 1
Input-output description of SISO LTI systems using transfer functions
State-space realization
Controllable, observable, modal canonical forms
Tue Sept 3
Ch. 2
Fields and vector spaces
Linear independence, bases, dimension
Change of basis
Linear operators and matrices
Thu Sept 5
Ch. 2
Linear operators: nullspace and range
Eigenvalues and eigenvectors
Diagonalization and Jordan canonical form
Tue Sep 10
Ch. 3
Solving state-space equations
State transition matrix
Matrix exponential
The Cayley-Hamilton theorem
Thu Sep 12
Ch. 3
Solving state-space equations: time-varying systems
The fundamental matrix and the state transition matrix
Peano-Baker series

System structural properties

Tue Sep 17
Ch. 4
Stability
Motivating example: external vs. internal stability, pole-zero cancellation
Stability in the sense of Lyapunov
Asymptotic and global asymptotic stability
Stability criteria for LTI systems
Lyapunov's direct method
LaSalle's invariance theorem
Thu Sep 19
Ch. 4
Stability (cont.)
Stability of linear time-invariant systems
Lyapunov equation
Nonlinear systems and linearization
Hartman-Grobman theorem (the easy part)
Input-output stability
Tue Sep 24
Ch. 5
Controllability
Motivation and definition
The general LTV case: the controllability Gramian
Thu Sep 26
No class: Allerton conference

Tu Oct 1
Ch. 5
Controllability (cont.)
Controllability of linear time-invariant systems
Controllability matrix, rank criterion
Thu Oct 3
Exam 1 -- in class
Covers material through stability
Tue Oct 8
Ch. 5, 6
Controllability (cont.) and intro to observability
Other tests for controllability
Modal form, the Hautus-Rosenbrock criterion
Observability: motivation and definition
The observability matrix
The general LTV case: the observability Gramian
Thu Oct 10
Ch. 6
Observability (cont.)
Duality between controllability and observability
Kalman canonical forms
Realization of transfer functions
Minimal (controllable and observable) realization

Feedback

Tue Oct 15
Ch. 7
Pole placement
Kalman's canonical forms revisited
Stabilizability and closed-loop pole placement
Detectability and observer pole placement
Duality between controllability/observability and between stabilizability/detectability
Thu Oct 17
Ch. 7
Pole placement (cont.)
Dynamic output feedback
The separation principle
Reduced-order (Luenberger) observers
Tue Oct 22
Books of Chen and Sontag
System invariants
Similarity and feedback equivalence
Canonical forms revisited
Controllability indices
Thu Oct 24
Ch. 8
Tracking and disturbance rejection
Internal model principle
Conditions in terms of controllability
Transfer function approach: Sylvester systems
Tue Oct 29
Ch. 9
Internal model principle revisited
IMP for linear time-invariant systems (see Section 1 of E.D. Sontag, "Adaptation and regulation with signal detection implies internal model")
Control goals: stability, regulation/tracking, transient response shaping, robustness
Sensitivity to plant model misspecification and disturbances
Fundamental limitations: Bode's sensitivity integral
Thu Oct 31
Schedule TBD
Thu Nov 5
No class. General Election Day.
Thu Nov 7
Schedule TBD
Tu Nov 12
Exam 2 -- in class
Covers material through TBD

Optimal Control

Thu Nov 14
Ch. 10
Dynamic progamming
Formulation of the finite-horizon optimal control problem
Bellman's dynamic programming principle
The Hamilton-Jacobi-Bellman equation
The Linear Quadratic Regulator (LQR) problem: formulation and derivation of optimal control using completion of squares
Tue Nov 19
LQR problem
Riccati equation & boundary conditions
Thu Nov 21
Intro to minimum principle
Lagrange multiplier
LQR again
Tue Dec 3
Infinite horizon LQR problem
intro to time optimal control
Tue Dec 5
Bang bang control
nonlinear examples

Tue Dec 10
Review