1. Let \(\langle M \rangle \) denote the encoding of a Turing machine \(M \) (or if you prefer, the Python source code for the executable code \(M \)). Recall that \(w^R \) denotes the reversal of string \(w \). Prove that the following language is undecidable.

\[
\text{SelfRevAccept} := \{ \langle M \rangle \mid M \text{ accepts the string } \langle M \rangle^R \}
\]

Note that Rice’s theorem does not apply to this language.

Solution (diagonalization): For the sake of argument, suppose that there is a Turing machine \(\overline{SRA} \) that decides \(\text{SelfRevAccept} \). For any Turing machine \(M \), we have

\[
\overline{SRA} \text{ accepts } \langle M \rangle \iff M \text{ accepts } \langle M \rangle^R.
\]

Let \(\overline{SRA} \) be the Turing machine obtained from \(SRA \) by swapping its accept and reject states. For any Turing machine \(M \), we have

\[
\overline{SRA} \text{ rejects } \langle M \rangle \iff M \text{ accepts } \langle M \rangle^R
\]

Finally, let \(\overline{SRA}^* \) be the Turing machine that reverses its input string and then passes control to \(\overline{SRA} \). For any Turing machine \(M \), we have

\[
\overline{SRA}^* \text{ rejects } \langle M \rangle^R \iff M \text{ accepts } \langle M \rangle^R
\]

In particular, if we set \(M = \overline{SRA}^* \), we have

\[
\overline{SRA}^* \text{ rejects } \langle \overline{SRA}^* \rangle^R \iff \overline{SRA}^* \text{ accepts } \langle \overline{SRA}^* \rangle^R
\]

But that’s impossible! Our original assumption must be incorrect; \(SRA \) does not exist.

Rubric: Standard diagonalization rubric.
Solution (reduction from Halt): For the sake of argument, suppose there is an algorithm `DecideSelfRevAccept` that correctly decides the language `SelfRevAccept`. Then we can solve the halting problem as follows:

\[
\text{DecideHalt}(\langle M, w \rangle):
\begin{align*}
\text{Encode the following Turing machine } M': \\
\quad M'(x): & \text{ run } M \text{ on input } w \\
& \text{return True} \\
\end{align*}
\]

We prove this reduction correct as follows:

\[\implies\] Suppose \(M \) halts on input \(w \).
 Then \(M' \) accepts every input string \(x \).
 In particular, \(M' \) accepts the string \(\langle M \rangle^R \).
 So `DecideSelfRevAccept` must accept the encoding \(\langle M' \rangle \).
 We conclude that `DecideHalt` correctly accepts the encoding \(\langle M, w \rangle \).

\[\iff\] Suppose \(M \) does not halt on input \(w \).
 Then \(M' \) diverges on every input string \(x \).
 In particular, \(M' \) does not accept the string \(\langle M \rangle^R \).
 So `DecideSelfRevAccept` must reject the encoding \(\langle M' \rangle \).
 We conclude that `DecideHalt` correctly rejects the encoding \(\langle M, w \rangle \).

In both cases, `DecideHalt` is correct. But that's impossible, because `Halt` is undecidable. We conclude that the algorithm `DecideSelfRevAccept` does not exist. ■

Rubric: Standard undecidability reduction rubric. This is not the only correct reduction.
2. Let M be a Turing machine, let w be an arbitrary input string, and let s be an integer. We say that M accepts w in space s if, given w as input, M accesses only the first s (or fewer) cells on its tape and eventually accepts.

Prove that the following language is undecidable:

$$\text{SomeSquareSpace} = \{ \langle M \rangle \mid M \text{ accepts at least one string } w \text{ in space } |w|^2 \}$$

Solution (reduction from Halt): For the sake of argument, suppose there is an algorithm DecideLowSpace that correctly decides the stated language. Then we can solve the halting problem as follows:

$\text{DecideHalt}(\langle M, w \rangle)$:

Encode the following Turing machine M':

- $M'(x)$: run M on input w
- return True

return $\text{DecideLowSpace}(\langle M' \rangle)$

(We seem to use this reduction a lot, don't we?) We prove this reduction correct as follows. Without loss of generality, assume that the input alphabet contains the symbol 1.

\implies Suppose M halts on input w.

Let s be the number of cells that M accesses on its tape given input w.

Then M' accepts every input string x using space s.

In particular, M' accepts the string 1^s using space $s \leq |1^s|^2$.

So DecideLowSpace must accept the encoding $\langle M' \rangle$.

We conclude that DecideHalt correctly accepts the encoding $\langle M, w \rangle$.

\Longleftarrow Suppose M does not halt on input w.

Then M' diverges on every input string x.

In particular, M' does not accept any string w (in space $|w|^2$ or otherwise).

So DecideLowSpace must reject the encoding $\langle M' \rangle$.

We conclude that DecideHalt correctly rejects the encoding $\langle M, w \rangle$.

In both cases, DecideHalt is correct. But that’s impossible, because Halt is undecidable. We conclude that the algorithm DecideLowSpace does not exist.

\blacksquare

Rubric: 5 points: standard undecidability reduction rubric (scaled). This is not the only correct solution. Notice that Rice’s Theorem cannot be used here.
3. Consider the following language:

\[
Picky = \left\{ \langle M \rangle \mid \text{ } M \text{ accepts at least one input string and } M \text{ rejects at least one input string} \right\}
\]

(a) Prove that Picky is undecidable.

Solution (reduction from Halt): We can reduce the standard halting problem to Picky as follows:

\[
\text{DecideHalt}(\langle M \rangle, w) :=
\]

Encode the following Turing machine \(M' \):

\[
M'(x):
\]

if \(x = w \)

run \(M \) on input \(w \)

return TRUE

else

return FALSE

return DecidePicky(\(\langle M' \rangle \))

We prove this reduction correct as follows:

\[\Rightarrow\] Suppose \(M \) halts on input \(w \).

Then \(M' \) accepts \(w \) but rejects every other input string.

So \(\langle M' \rangle \in \text{Picky} \).

So \(\text{DecidePicky} \) accepts \(\langle M' \rangle \).

We conclude that \(\text{DecideHalt} \) correctly accepts \(\langle M \rangle, w \).

\[\Leftarrow\] Suppose \(M \) does not halt on input \(w \).

Then \(M' \) diverges on \(w \) but rejects every other input string.

So \(\langle M' \rangle \notin \text{Picky} \).

So \(\text{DecidePicky} \) rejects \(\langle M' \rangle \).

We conclude that \(\text{DecideHalt} \) correctly rejects \(\langle M \rangle, w \).

In both cases, \(\text{DecideHalt} \) is correct. But that's impossible, because Halt is undecidable. We conclude that the algorithm \(\text{DecidePicky} \) does not exist. ■

Rubric: 5 points: standard undecidability rubric (scaled). These are not the only correct solutions. Notice that Rice’s Theorem cannot be used here.
(b) Sketch an algorithm that accepts Picky.

Solution: The following algorithm uses a universal Turing machine with a timer, to simulate the encoded Turing machine M.

```plaintext
AcceptPicky((M)):
    accepted ← False
    rejected ← False
    for $L ← 1$ to $∞$
        for all strings $w ∈ Σ^*$ with $|w| ≤ L$
            simulate $M$ on input $w$ for $L$ steps
            if $M(w)$ accepts before step $L$
                accepted ← True
            if $M(w)$ rejects before step $L$
                rejected ← True
            if accepted ∧ rejected
                return True
```

Each iteration of the outer loop executes in finite time, because there are only finitely many strings of length at most L and we simulate M on each of those input strings for a finite number of steps. Suppose M accepts input string w after T steps, and rejects some string w' after T' steps. Then AcceptPicky will halt and return True after at most $\max\{T, T'\}$ iterations of the outer loop.

Rubric: 5 points = 1 for using universal TM (or other TM simulation) + 1 for timer + 2 for dovetailing details + 1 for correctness argument. This is not the only correct solution.

Standard rubrics for undecidability proofs. For problems out of 10 points:

- **Diagonalization:**
 + 4 for correct wrapper Turing machine
 + 6 for self-contradiction proof (= 3 for $⇔$ + 3 for $⇒$)

- **Reduction:**
 + 4 for correct reduction
 + 3 for “if” proof
 + 3 for “only if” proof

- **Rice’s Theorem:**
 + 4 for positive Turing machine
 + 4 for negative Turing machine
 + 2 for other details (including using the correct variant of Rice’s Theorem)