Processing math: 100%

TAM 212: Introductory Dynamics

Kinetics of rigid bodies #reg

Center of mass #reg‑sc

Total mass of a body.#reg‑em

m=VρdV

Center of mass C.#reg‑ec

rC=1mVρrdV

Moment of inertia #reg‑si

Moment of inertia about axis ˆa through point P.#reg‑ei

IP,ˆa=Vρr2dV

Here r is the distance from the axis through P in direction ˆa.

Euler's equations #reg‑se

Rigid body equations for rotation about axis ˆa.#reg‑ee

iFi=maCiMC,i=IC,ˆaαor iMO,i=IO,ˆaαif O is a fixed point

Linear momentum #reg‑sl

Linear momentum of a rigid body.#reg‑el

p=mvC

Kinetics equation using linear momentum.#reg‑el

iFi=˙p

Angular momentum #reg‑sa

Angular momentum of a rigid body rotating about axis ˆa through point P.#reg‑ea

HP=IP,ˆaω

Rotation equation using angular momentum.#reg‑er

iMC,i=˙HCor iMO,i=˙HOif O is a fixed point

Force couples and pure moments #reg‑so