Project

# Title Team Members TA Documents Sponsor
57 Consumer device which indicates real-time signals [Pitched Project]
Bipin Ghimire
Brian Oh
Sakar Karki
Jialiang Zhang
#Problem: The urgent challenge of climate change has driven focus on energy production's carbon intensity. Yet, the real-time carbon impact of electricity consumption remains obscure to consumers. Existing models do not provide instantaneous feedback on the carbon intensity (CO2e/MWh) of electricity from local grids. This gap prevents consumers from making informed decisions to reduce their carbon footprint actively.

#Solution We propose a real-time carbon intensity indicator for residential consumers. This device will visually and audibly alert users to the current and changing carbon intensity of their local grid's electricity. The product will leverage this data to prompt automated energy consumption reduction during high grid strain or suggest energy-efficient appliances.

The pitch states “the function would be to get a residential electricity consumer to see and hear an indicator, whether via light, notification popup, or a sound which alerts them to either a current state or a changing state of real-time carbon intensity on their local grid. As the basic device matures, the business would be built around using this information to automate reductions in energy consumption overall or at times of grid strain, or identify more energy efficiency appliances, both with direct carbon reduction impacts.” Green, yellow, and red LEDs to show good, OK, bad, and a similar set of sounds. The product is wifi-enabled wall plug with a light and speaker controlled by a small circuit.

#Solution Components ##Subsystem 1: Real-Time Data Acquisition and Communication This subsystem will acquire real-time carbon intensity data from sources like ElectricityMaps, WattTime, and similar services. It will use the Wi-Fi module (ESP32) to fetch and communicate data to the indicator.

##Subsystem 2: User Interface Indicator Involves a set of LEDs (Green, Yellow, Red) and a speaker to provide visual and auditory feedback based on the real-time data. Part numbers: Green LED (WP710A10SGC), Yellow LED (WP710A10SYC), Red LED (WP710A10SRC), and a small speaker (CUI CMS-0361KLX). It will also provide a potential user input button (MDPSLFS) to trigger and automate energy-saving actions.

##Subsystem 3: Control and Automation Logic This will use a microcontroller (ESP32P) to process the data and control the LED and sound alerts. It will also interface with home automation systems to control energy consumption based on carbon intensity. AC prongs (Q-910) will also be used to be able to plug the device into the power outlet for power data and as a power source.

#Criterion For Success Our project's success will hinge on the following testable goals:

Accurate display of real-time carbon intensity with less than a 60-second lag from the data source. The ability to trigger and automate energy-saving actions in response to high carbon intensity readings. User-friendly interface that clearly communicates the current state and changes in carbon intensity to the consumer.

Resonant Cavity Field Profiler

Salaj Ganesh, Max Goin, Furkan Yazici

Resonant Cavity Field Profiler

Featured Project

# Team Members:

- Max Goin (jgoin2)

- Furkan Yazici (fyazici2)

- Salaj Ganesh (salajg2)

# Problem

We are interested in completing the project proposal submitted by Starfire for designing a device to tune Resonant Cavity Particle Accelerators. We are working with Tom Houlahan, the engineer responsible for the project, and have met with him to discuss the project already.

Resonant Cavity Particle Accelerators require fine control and characterization of their electric field to function correctly. This can be accomplished by pulling a metal bead through the cavities displacing empty volume occupied by the field, resulting in measurable changes to its operation. This is typically done manually, which is very time-consuming (can take up to 2 days).

# Solution

We intend on massively speeding up this process by designing an apparatus to automate the process using a microcontroller and stepper motor driver. This device will move the bead through all 4 cavities of the accelerator while simultaneously making measurements to estimate the current field conditions in response to the bead. This will help technicians properly tune the cavities to obtain optimum performance.

# Solution Components

## MCU:

STM32Fxxx (depending on availability)

Supplies drive signals to a stepper motor to step the metal bead through the 4 quadrants of the RF cavity. Controls a front panel to indicate the current state of the system. Communicates to an external computer to allow the user to set operating conditions and to log position and field intensity data for further analysis.

An MCU with a decent onboard ADC and DAC would be preferred to keep design complexity minimum. Otherwise, high MIPS performance isn’t critical.

## Frequency-Lock Circuitry:

Maintains a drive frequency that is equal to the resonant frequency. A series of op-amps will filter and form a control loop from output signals from the RF front end before sampling by the ADCs. 2 Op-Amps will be required for this task with no specific performance requirements.

## AC/DC Conversion & Regulation:

Takes an AC voltage(120V, 60Hz) from the wall and supplies a stable DC voltage to power MCU and motor driver. Ripple output must meet minimum specifications as stated in the selected MCU datasheet.

## Stepper Drive:

IC to control a stepper motor. There are many options available, for example, a Trinamic TMC2100. Any stepper driver with a decent resolution will work just fine. The stepper motor will not experience large loading, so the part choice can be very flexible.

## ADC/DAC:

Samples feedback signals from the RF front end and outputs the digital signal to MCU. This component may also be built into the MCU.

## Front Panel Indicator:

Displays the system's current state, most likely a couple of LEDs indicating progress/completion of tuning.

## USB Interface:

Establishes communication between the MCU and computer. This component may also be built into the MCU.

## Software:

Logs the data gathered by the MCU for future use over the USB connection. The position of the metal ball and phase shift will be recorded for analysis.

## Test Bed:

We will have a small (~ 1 foot) proof of concept accelerator for the purposes of testing. It will be supplied by Starfire with the required hardware for testing. This can be left in the lab for us to use as needed. The final demonstration will be with a full-size accelerator.

# Criterion For Success:

- Demonstrate successful field characterization within the resonant cavities on a full-sized accelerator.

- Data will be logged on a PC for later use.

- Characterization completion will be faster than current methods.

- The device would not need any input from an operator until completion.

Project Videos