Project

# Title Team Members TA Documents Sponsor
72 Automatic Window/Blind Regulator
Austin Chong
Mahdi Almosa
Marco Oyarzun
Douglas Yu design_document1.pdf
final_paper1.pdf
presentation1.pptx
proposal1.pdf
proposal2.pdf
Automatic Window/Blind Regulator

Team Members:
- aichong2
- oyarzun2
- malmosa2


# Problem

Waking up in the morning could pose a difficult challenge, especially when the temperature is too hot/cold or there isn't enough natural light in the room. In order for most people to fall asleep, the thermostat mostly takes care of the regulating temperature and they keep the blinds shut, however, some people prefer natural air and lighting in their homes instead. This could be an annoyance when the windows and blinds need to be changed manually.


# Solution

Our solution is to make a fully automated window/blind regulating system that opens the window and blinds according to different environment conditions. The solution to wanted air could be an automated device that opens and closes the windows at the correct temperatures and interior air quality levels. There would also be an additional security component that uses an outside-facing camera that tells the system to close the window if a security threat is detected or if the weather is poor (rain/snow). Also, if the air quality is low (smoke/pollution), the window would close in accordance with that. Conversely, if the air quality is poor inside then the window would open to allow fresh air to enter. Air quality and weather conditions would be updated in real time via the internet. According to the reading of the thermostat, the windows could be opened/closed in order to have a good temperature regulation in the room. Additionally, the blinds could open at sunrise and close at sunset or do both as custom times.


# Solution Components

## Subsystem 1

# Power supply system
The system will need varying levels of voltage, so either a wall outlet or battery can provide power that is then converted to DC to power the digital components.

# Opening mechanism
The system will need servos to open the window and blinds. This subsystem will receive signals from the microcontroller unit to determine when and how much to open the window or blinds.

# Control unit
This is where the microcontroller will operate. It will take input data from the temperature, air quality, and weather conditions (as well as current time) and move the servos accordingly.


# Criterion For Success

The first goal for this project would be to be able to open/close certain windows and blinds. There are a variety of windows that have different manual functions, some having a pulling system where others have to pull and lock. This would be the first challenge and most likely the most difficult milestone.

The next goal would be to connect the window regulator to a thermostat, to the internet, and to temperature and air quality sensors, in order to detect when to open/close the windows appropriately.

Another goal would be to have the blinds open or close at specific times, mainly before and after dark.

S.I.P. (Smart Irrigation Project)

Jackson Lenz, James McMahon

S.I.P. (Smart Irrigation Project)

Featured Project

Jackson Lenz

James McMahon

Our project is to be a reliable, robust, and intelligent irrigation controller for use in areas where reliable weather prediction, water supply, and power supply are not found.

Upon completion of the project, our device will be able to determine the moisture level of the soil, the water level in a water tank, and the temperature, humidity, insolation, and barometric pressure of the environment. It will perform some processing on the observed environmental factors to determine if rain can be expected soon, Comparing this knowledge to the dampness of the soil and the amount of water in reserves will either trigger a command to begin irrigation or maintain a command to not irrigate the fields. This device will allow farmers to make much more efficient use of precious water and also avoid dehydrating crops to death.

In developing nations, power is also of concern because it is not as readily available as power here in the United States. For that reason, our device will incorporate several amp-hours of energy storage in the form of rechargeable, maintenance-free, lead acid batteries. These batteries will charge while power is available from the grid and discharge when power is no longer available. This will allow for uninterrupted control of irrigation. When power is available from the grid, our device will be powered by the grid. At other times, the batteries will supply the required power.

The project is titled S.I.P. because it will reduce water wasted and will be very power efficient (by extremely conservative estimates, able to run for 70 hours without input from the grid), thus sipping on both power and water.

We welcome all questions and comments regarding our project in its current form.

Thank you all very much for you time and consideration!