Project

# Title Team Members TA Documents Sponsor
46 Inventory Tracker
Alex Buchheit
Sara Alabbadi
Sooha Ryu
Jason Zhang design_document2.pdf
design_document1.pdf
final_paper1.pdf
presentation1.pptx
presentation2.pptx
presentation3.pptx
proposal1.pdf
proposal2.pdf
video
## Team Members

Sooha Ryu (soohar2)

Sara Alabbadi (saraa6)

Alex Buchheit (alexwb2)

## Problem

I work as a lab assistant and one of my responsibilities is to restock various supplies in the lab. I have to manually enter supplies into an excel spreadsheet when they are used so the lab supervisor knows when to purchase more. This takes a lot of time and because we do it manually we have many discrepancies in inventory. It would be easier to not have to manually take inventory and have a system that could do that.

## Solution

Our proposed solution is an inventory tracking system. This system would use either RFID or computer vision to check out and return supplies. The user that is checking them out would be assigned a PIN number or scan their iCard to check out supplies. This information would be connected to a website and display that shows each supply being used and what user is using it.

Along with that, supplies stored in drawers or cabinets could be accessed by the user through the PIN or iCard scan. The system would also determine if the drawer had been opened by an unauthorized person and send an alert to the web database.

## Solution Components

## Smart Drawer

The supply drawer could be held shut by a magnet and a current carrying wire to create a magnetic field to hold it shut. Once it is determined through RFID that the correct user wants access to the drawer, power will no longer be sent through the wire, allowing the user to safely open the drawer. A sensor will be attached to the drawer to determine if it is opened. If it is opened and current is still flowing through the wire, this will alert the system that it has been opened by force by an unauthorized person.

Possible Proximity Sensor: HC-SR04
Datasheet:
https://cdn.sparkfun.com/datasheets/Sensors/Proximity/HCSR04.pdf

## User Access Control

iCard will be read by an RFID system to “unlock” the drawer they have access to. The user information will be stored in the database to keep track of inventory.

Possible Microcontrollers: ATMEGA328P-AUR, STM32F401RBT6, STM32F103C8T6TR, ATMEGA32U4-AUR, ESP32
Datasheets:
https://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061B.pdf

https://www.st.com/content/ccc/resource/technical/document/datasheet/9e/50/b1/5a/5f/ae/4d/c1/DM00086815.pdf/files/DM00086815.pdf/jcr:content/translations/en.DM00086815.pdf

https://www.st.com/resource/en/datasheet/stm32f103cb.pdf

http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7766-8-bit-AVR-ATmega16U4-32U4_Summary.pdf

https://cdn.sparkfun.com/datasheets/IoT/esp32_datasheet_en.pdf


## Inventory Tracking

A system to keep track of all items in the drawers using either RFID. All the items in the drawers will have a tag/chip attached to them, so once someone checks it out or returns it, the system will be able to know the items and keep track of the inventory. The data will be updated as inventory changes with information of the user from the user access control.

Possible RFID Reader: RFID READER R/W 13.56 MHZ MOD, RFID Reader ID-12LA

Datasheet: https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/5656/DLP-RFID2%28D%29-V2.pdf
https://cdn.sparkfun.com/assets/9/3/0/5/2/DS-11827-RFID_Reader_ID-12LA__125_kHz_.pdf?_gl=1*1eqzthn*_ga*NDYyODY1MjM3LjE3MDY3NDE1NjA.*_ga_T369JS7J9N*MTcwNjc0MTU2MC4xLjEuMTcwNjc0MTcwOC4zNy4wLjA.

Possible RFID Chip: RF37S114HTFJB, UHF RFID Tags - Adhesive

Datasheet:
https://www.ti.com/lit/ds/symlink/rf37s114.pdf?HQS=dis-dk-null-digikeymode-dsf-pf-null-wwe&ts=1706682267886&ref_url=https%253A%252F%252Fwww.ti.com%252Fgeneral%252Fdocs%252Fsuppproductinfo.tsp%253FdistId%253D10%2526gotoUrl%253Dhttps%253A%252F%252Fwww.ti.com%252Flit%252Fgpn%252Frf37s114

https://www.sparkfun.com/rfid


## Web Database

The database will be updated every time a user checks out or returns an item. It will also keep the records of when and who checked out what and what’s been returned. The database will also have how many items are in stock and display it with the checkout/return records. An alert message will be displayed if anyone forcefully opens the drawer.

Possible Bluetooth Module: ESP32-S3-WROOM-1-N16
Datasheet:
https://www.espressif.com/sites/default/files/documentation/esp32-s3-wroom-1_wroom-1u_datasheet_en.pdf


## Stretch Goal

If time allows, for keeping track of inventory, we could incorporate computer vision technology instead of an RFID. For using computer vision, we plan to have weight sensors on the drawers to check if there’s been any change of inventory. If there is, the camera would be activated and the user will show the item to the camera and once it recognizes what it is, it will record it to the database and the user will be able to close the drawer. For returning, once the user scans their iCard, they will be able to open the drawers and return the items. Knowing the items that’s been checked out by the user and the change in weight in the drawer, the system will figure out the returned item and record it to the database.

# Criteria For Success

Drawers can be locked and unlocked depending on the user access

System is able to recognize items checked out and returned

The system will display the current amount of items in stock

The system should display items checked out and the users that have checked them out

It should allow supervisors to change the number in stock if they restock supplies

Web database is updated regularly with correct user information

Correctly alerts database if drawer opened by force

El Durazno Wind Turbine Project

Alexander Hardiek, Saanil Joshi, Ganpath Karl

El Durazno Wind Turbine Project

Featured Project

Partners: Alexander Hardiek (ahardi6), Saanil Joshi (stjoshi2), and Ganpath Karl (gkarl2)

Project Description: We have decided to innovate a low cost wind turbine to help the villagers of El Durazno in Guatemala access water from mountains, based on the pitch of Prof. Ann Witmer.

Problem: There is currently no water distribution system in place for the villagers to gain access to water. They have to travel my foot over larger distances on mountainous terrain to fetch water. For this reason, it would be better if water could be pumped to a containment tank closer to the village and hopefully distributed with the help of a gravity flow system.

There is an electrical grid system present, however, it is too expensive for the villagers to use. Therefore, we need a cheap renewable energy solution to the problem. Solar energy is not possible as the mountain does not receive enough solar energy to power a motor. Wind energy is a good alternative as the wind speeds and high and since it is a mountain, there is no hindrance to the wind flow.

Solution Overview: We are solving the power generation challenge created by a mismatch between the speed of the wind and the necessary rotational speed required to produce power by the turbine’s generator. We have access to several used car parts, allowing us to salvage or modify different induction motors and gears to make the system work.

We have two approaches we are taking. One method is converting the induction motor to a generator by removing the need of an initial battery input and using the magnetic field created by the magnets. The other method is to rewire the stator so the motor can spin at the necessary rpm.

Subsystems: Our system components are split into two categories: Mechanical and Electrical. All mechanical components came from a used Toyota car such as the wheel hub cap, serpentine belt, car body blade, wheel hub, torsion rod. These components help us covert wind energy into mechanical energy and are already built and ready. Meanwhile, the electrical components are available in the car such as the alternator (induction motor) and are designed by us such as the power electronics (AC/DC converters). We will use capacitors, diodes, relays, resistors and integrated circuits on our printed circuit boards to develop the power electronics. Our electrical components convert the mechanical energy in the turbine into electrical energy available to the residents.

Criterion for success: Our project will be successful when we can successfully convert the available wind energy from our meteorological data into electricity at a low cost from reusable parts available to the residents of El Durazno. In the future, their residents will prototype several versions of our turbine to pump water from the mountains.