Project

# Title Team Members TA Documents Sponsor
61 Stick On Car Proximity Sensor
Aryan Damani
Raunak Bathwal
Shrijan Sathish
Angquan Yu final_paper1.pdf
other1.pdf
photo1.jpg
presentation1.pptx
proposal1.pdf
Team Members:
Shrijan Sathish (shrijan2)
Aryan Damani (aryansd2)
Raunak Bathwal (raunakb2)

# Problem

Describe the problem you want to solve and motivate the need.

Many older cars lack proximity sensors that let the user know how close their car is to various obstacles, whether it be their garages, parking spot walls, or even curbs. Though this can be handled through various tricks of knowing where to look in the rearview or side mirrors to know where the front, sides, or back of the car is with respect to walls and other obstacles, it is always better to be sure. We aim to solve this inconvenience that comes with older model cars.

# Solution

Describe your design at a high-level, how it solves the problem, and introduce the subsystems of your project.

Our solution involves using 4 proximity sensors that can be placed on each corner of the car, with a receiver that can be placed inside the car. These will be linked through bluetooth and the receiver itself will also contain 4 lights on each of its corners. This will correspond with each sensor placed, and light up as well as produce an auditory cue (most likely small “beeps”) to alert the user how close they are to an obstacle and where it is. The closer you are to an obstacle, the faster the frequency of the beeps.



# Solution Components

## Subsystem 1: Proximity Sensor
The first, and main system, will be the sensors placed all around the car. Each module will be the same, regardless of where on the car it is placed. Each module will consist of 1-3 ultrasonic sensors(HC-SR04) based on their predicted placement on the vehicle, our custom PCB, a small watch battery, and a wireless RF transceiver (WRL-10534). The module will constantly transmit distance data to the receiver module located within the vehicle to make sure the driver is aware of how close they may be to any potential obstacles.

## Subsystem 2: Receiver

The receiver subsystem will be located within the vehicle, consisting of an RF receiver (WRL-10534) to communicate with the above proximity sensors, a power adapter to get power from the USB/car power, and a microcontroller(ATmega328P) to read input from proximity sensors, and output signals to control the lights and speakers over bluetooth using a bluetooth module (CC2541F256TRHATQ1) if necessary and if the vehicle is too close to an object.

## Subsystem 3: Lights + Speaker
The light and speaker system will consist of a small speaker that we have that will change frequency based on how close an object is, combined with a set of red LED diodes to represent which sensor is being triggered so the driver knows which direction to avoid.

# Criterion For Success

Our criterion for success will be testing with an actual car, where we reach a constant beep when we reach a distance of less than one foot to an obstacle, which will be our reassurance that the sensors work. Our second criterion for success is to get someone to use the system and determine if they are able to stop before/avoid obstacles with a relatively safe margin of error.




VoxBox Robo-Drummer

Craig Bost, Nicholas Dulin, Drake Proffitt

VoxBox Robo-Drummer

Featured Project

Our group proposes to create robot drummer which would respond to human voice "beatboxing" input, via conventional dynamic microphone, and translate the input into the corresponding drum hit performance. For example, if the human user issues a bass-kick voice sound, the robot will recognize it and strike the bass drum; and likewise for the hi-hat/snare and clap. Our design will minimally cover 3 different drum hit types (bass hit, snare hit, clap hit), and respond with minimal latency.

This would involve amplifying the analog signal (as dynamic mics drive fairly low gain signals), which would be sampled by a dsPIC33F DSP/MCU (or comparable chipset), and processed for trigger event recognition. This entails applying Short-Time Fourier Transform analysis to provide spectral content data to our event detection algorithm (i.e. recognizing the "control" signal from the human user). The MCU functionality of the dsPIC33F would be used for relaying the trigger commands to the actuator circuits controlling the robot.

The robot in question would be small; about the size of ventriloquist dummy. The "drum set" would be scaled accordingly (think pots and pans, like a child would play with). Actuators would likely be based on solenoids, as opposed to motors.

Beyond these minimal capabilities, we would add analog prefiltering of the input audio signal, and amplification of the drum hits, as bonus features if the development and implementation process goes better than expected.

Project Videos