Project

# Title Team Members TA Documents Sponsor
45 Continuous Arteriovenous Fistula (AVF) Monitoring Device [PITCHED PROJECT]
Aryan Parikh
Rishab Rao Veldur
Satyansh Yeluri
Surya Vasanth design_document1.pdf
design_document2.pdf
final_paper1.pdf
other1.pdf
proposal1.pdf
# Continuous Arteriovenous Fistula (AVF) Monitoring Device

Team Members:
- Aryan Parikh (aparik31)
- Rishab Rao (rveldur2)
- Satyansh Yeluri (syeluri2)

# Problem

Arteriovenous Fistulas/Grafts (AVFs/AVGs) are crucial to patients with end-stage kidney disease. They allow for hemodialysis, which has significant mortality and quality of life benefits in younger patients. Between 2000 and 2020, the prevalent count of individuals receiving HD nearly doubled to $480,516. In older patients, it’s often considered a lifeline. However, AVFs are known to “go down”. They are susceptible to stenosis, and thrombosis, and enlargement over time, leading to high-output cardiac failure. Currently there is no format for continuous monitoring of these grafts, and when they thrombose in the acute setting, often go undetected for days, if not weeks. The cost range to create an AV fistula is also between $3,401-$5,189. Several studies have pointed out that early graft intervention can improve the salvage of these fistulas, prolonging their use and minimizing the number of additional surgeries required. Finally, studies have found that if grafts are not intervened within 7 days, there are significant long term mortality risks and poor patient outcomes.

https://usrds-adr.niddk.nih.gov/2022/end-stage-renal-disease/1-incidence-prevalence-patient-characteristics-and-treatment-modalities

The basic tenet for vascular access monitoring and surveillance is that stenosis develop over variable intervals in the great majority of vascular accesses and, if detected and corrected, under dialysis can be minimized or avoided (dialysis dose protection) and the rate of thrombosis can be reduced.

https://www.ajkd.org/article/S0272-6386(06)00646-9/fulltext#relatedArticles

Problem Statement: Graft stenosis and thrombosis are the leading causes of loss of vascular access patency, with delay in treatment leading to loss of vascular access and increased mortality rates and decreased quality of life in patients with end-stage renal disease.

# Solution

AVFs are often embedded in the arm, where the radial artery and adjacent veins are involved in their creation. What clinicians use to determine fistula viability is palpation, where the palpable trill (or vibration) of the graft can be felt. In the context of vascular access for hemodialysis, a trill is often associated with the feeling of blood flow or the movement of blood through the graft. A strong, palpable trill suggests good blood flow through the access site, indicating that the fistula is functioning well.

The idea is to develop a device that can be attached as a patch adjacent to the fistula to sample this venous trill using auditory input and machine learning to gauge deviations from an initial baseline. The device would be placed initially and cross-referenced with the current gold standard of duplex ultrasound to establish a baseline. As the device lives with the patient, it will learn progressive changes in venous hum pattern (stenosis) that can provide information to clinicians on optimal follow-up. Otherwise, if it detects the absence of a hum (thrombosis) it will immediately alert the patient and provider for attention. Pitch should correspond with an increase in percentage of stenosis and be interpreted as more frequent oscillations in a pressure waveform over time.

# Solution Components

## Microphone

This subsystem would take in sound input from a small microphone to capture a signal underneath the skin and feed into a microprocessor input.

https://ieeexplore.ieee.org/document/7438386

TDK InvenSense T4076 & T4078 MEMS Microphones

## Microprocessor Unit

We will use an Attiny85 and supporting components on our PCB. We will have to add a micro usb programmer for the Attiny85 and then add bluetooth capabilities on top of that. The microcontroller will receive input from the Microphone Module which captures acoustic signals related to venous hum patterns. These signals are essentially sound waves produced by blood flow in veins. We will use an algorithm on the acquired data to help analyze the different frequency components present in the venous hum patterns. Then the microcontroller can analyze the frequency spectrum of the venous hum patterns. The microcontroller can then help us compare the identified patterns with predefined patterns associated with normal and abnormal venous conditions. Based on the comparison, the system can detect differences in the venous hum patterns. Depending on the detected differences, the microcontroller will generate an alert if needed.

## Power Subsystem

It will be a 5 V lithium ion battery. We will have to step down the voltage to 3.3 V. We have no need for battery recharging. We will also have supporting components for the battery.

# Criterion For Success

- Transmit audio to app
- Accuracy: Device is able to distinguish changes in fistula stenosis
- Achieve real time data transmission

Assistive Chessboard

Robert Kaufman, Rushi Patel, William Sun

Assistive Chessboard

Featured Project

Problem: It can be difficult for a new player to learn chess, especially if they have no one to play with. They would have to resort to online guides which can be distracting when playing with a real board. If they have no one to play with, they would again have to resort to online games which just don't have the same feel as real boards.

Proposal: We plan to create an assistive chess board. The board will have the following features:

-The board will be able to suggest a move by lighting up the square of the move-to space and square under the piece to move.

-The board will light up valid moves when a piece is picked up and flash the placed square if it is invalid.

-We will include a chess clock for timed play with stop buttons for players to signal the end of their turn.

-The player(s) will be able to select different standard time set-ups and preferences for the help displayed by the board.

Implementation Details: The board lights will be an RGB LED under each square of the board. Each chess piece will have a magnetic base which can be detected by a magnetic field sensor under each square. Each piece will have a different strength magnet inside it to ID which piece is what (ie. 6 different magnet sizes for the 6 different types of pieces). Black and white pieces will be distinguished by the polarity of the magnets. The strength and polarity will be read by the same magnetic field sensor under each square. The lights will have different colors for the different piece that it is representing as well as for different signals (ie. An invalid move will flash red).

The chess clock will consist of a 7-segment display in the form of (h:mm:ss) and there will be 2 stop buttons, one for each side, to signal when a player’s turn is over. A third button will be featured near the clock to act as a reset button. The combination of the two stop switches and reset button will be used to select the time mode for the clock. Each side of the board will also have a two toggle-able buttons or switches to control whether move help or suggested moves should be enabled on that side of the board. The state of the decision will be shown by a lit or unlit LED light near the relevant switch.

Project Videos