Project

# Title Team Members TA Documents Sponsor
16 Handheld Rocket Tracker
Ben Olaivar
Manas Tiwari
Max Kramer
Sanjana Pingali final_paper1.pdf
other1.pdf
proposal3.pdf
video
# Handheld Rocket Tracker

Team Members:
- Ben Olaivar (olaivar3)
- Max Kramer (mdk5)
- Manas Tiwari (manast2)

# Problem

Locating a rocket after a launch can be difficult. When the rocket reaches apogee (peak height), it deploys parachutes and glides back to the ground, often landing several miles away from the launch site (check out this video from the Illinois Space Society). Some tracking solutions exist, such as altimeters and radio beacons, however they all suffer from similar issues of being clunky, unintuitive, or expensive. Radio beacons don’t send out their exact location, and are tracked by following the strength of their signal, which only gives the general direction of the beacon. Altimeters send out their exact location, but are costly ($380+) and often require a laptop to receive their position, which is inconvenient to carry during a search. A few handheld trackers exist, however they are costly ($475+), difficult to reconfigure, and unintuitive. Additionally, all of these solutions are limited to 1 device.

# Solution

We want to make a 2-part tracking system: A tracking beacon (referred to as a “puck” or “beacon”), and a handheld tracking device (referred to as “tracker”). The beacon will be placed inside the rocket, and will continuously transmit its coordinates. On the receiving end, the tracker will compare its own GPS location with the coordinates from the beacon. To make this intuitive, the tracker will display the direction (using an arrow on the screen), as well as the distance to the beacon.

# Solution Components

## Subsystem 1: Microcontroller Processor (both beacon and tracker)
This will house the codebase for this project. This will mainly be to display to the screen of the tracker and handle button inputs by the user.

## Subsystem 2: TRACKING SENSORS
This subsystem consists of all required sensors/peripherals required for acquiring the location and direction from the tracker to the beacon
- **GPS Module (both):** To get longitude and latitude values of both components
- **GPS Antenna (both):** For connecting to satellites.
- **Magnetometer(tracker):** For measuring the heading of the user.

## Subsystem 3: COMMUNICATION SYSTEM
The entire project depends on successful communication between the beacon(s) and the tracker. Therefore we will need the following components to set up an ability for the tracker to search out certain frequencies and for the beacon(s) to send out the same frequencies.
- **Transceiver (both):** Required generating signal between beacon and tracker
- **Antenna (both):** Mid-ranged antenna capable of transmitting/receiving signals between 3-5 miles. Can be replaced in future with better antennas.

## Subsystem 4: BATTERY AND POWER SUPPLY
Create a battery management system that supplies consistent 3.3V to the necessary sensors and MCU.
- **LiPo Batteries (tracker):** 3.7V. Compact, have long battery life, and are readily available.
- **Voltage Regulator (tracker):** Regulating voltage from battery pack to sensors/MCU (3.3V)
- **Battery Holder (tracker):** Holding batteries

## Subsystem 5: DATA DISPLAY
This will simply be the screen we use to display all needed information for the user to track their beacons using the tracker
- **E-Ink Display:** For displaying compass, frequency, and distance data

# Criterion For Success

- Primary Criterion: Demonstrate that the “Beacon” or “Puck” can be found by an end user being guided by the “Tracker”’s on-screen information

- Additional Criterion: Demonstrate the ability to change frequency at which the “Beacon” and “Tracker” Communicate

# Github Link

https://github.com/ben-olaivar/ECE445_software

Wireless IntraNetwork

Daniel Gardner, Jeeth Suresh

Wireless IntraNetwork

Featured Project

There is a drastic lack of networking infrastructure in unstable or remote areas, where businesses don’t think they can reliably recoup the large initial cost of construction. Our goal is to bring the internet to these areas. We will use a network of extremely affordable (<$20, made possible by IoT technology) solar-powered nodes that communicate via Wi-Fi with one another and personal devices, donated through organizations such as OLPC, creating an intranet. Each node covers an area approximately 600-800ft in every direction with 4MB/s access and 16GB of cached data, saving valuable bandwidth. Internal communication applications will be provided, minimizing expensive and slow global internet connections. Several solutions exist, but all have failed due to costs of over $200/node or the lack of networking capability.

To connect to the internet at large, a more powerful “server” may be added. This server hooks into the network like other nodes, but contains a cellular connection to connect to the global internet. Any device on the network will be able to access the web via the server’s connection, effectively spreading the cost of a single cellular data plan (which is too expensive for individuals in rural areas). The server also contains a continually-updated several-terabyte cache of educational data and programs, such as Wikipedia and Project Gutenberg. This data gives students and educators high-speed access to resources. Working in harmony, these two components foster economic growth and education, while significantly reducing the costs of adding future infrastructure.