Project

# Title Team Members TA Documents Sponsor
23 Retrofitting an iMac G3 Mouse to be Bluetooth-Enabled for Use in the 21st Century
Saif Kazmi
Savannah Moon Pagan
Sebastian Carrera
Jialiang Zhang final_paper1.pdf
other1.pdf
presentation1.pdf
proposal1.pdf
proposal2.pdf
# Retrofitting an iMac G3 Mouse to be Bluetooth-Enabled for Use in the 21st Century

Team Members:
- Savannah Pagan (spagan6)
- Saif Kazmi (skazmi21)
- Sebastian Carrera (carrera9)

# Problem
Describe the problem you want to solve and motivate the need.

Disposal of outdated technology contributes to approximately 50 million tons of e-waste annually, leading to environmental concerns. Our project aims to demonstrate a sustainable approach to repurposing technology from the past, diverting it from landfills and back into the consumers’ hands.

Specifically, by modernizing old devices, like updating the original iMac G3 to modern computing standards, as well as its original peripherals, such as the mouse included with the device, we not only extend the lifespan of these devices but also preserve their original creative style and design intent. This initiative will align vintage technology with modern computing needs, ultimately fostering a more eco-friendly and innovative technological landscape.

# Solution

Our project aims to replace legacy hardware within the 1998 iMac G3 by utilizing the internal components of a newer Mac Mini computer. The new components will be mounted inside the original iMac shell to give new life to this outdated machine. The original CRT screen will be replaced with a newer LCD screen. The original speakers and disc drive of the iMac will be re-utilized as well, and the ports will be upgraded to the relevant modern port types.

We also aim to update the original Apple USB mouse included with the device by using modern optical sensors and bluetooth to replace the legacy hardware. A modern switch of higher quality and durability will replace the original switch used for the mouse button and rather than physical rollers interacting with a rubberized ball on the bottom of the mouse, we will use an optical sensor to detect mouse movement. The user can customize the sensitivity of the mouse, a feature unavailable on the original hardware. The USB connection will be replaced with bluetooth to communicate with a computer. Due to its wireless nature, the mouse will be battery powered. The mouse can detect when it is not being used and automatically shut off as a battery saving measure, similar to modern bluetooth mice.

# Solution Components
2014 Mac Mini - 8GB RAM, 1 TB of storage

The Mac Mini will be utilized to update the iMac G3 to modern computing standards.

Mouse button

An Omron D2LS-21 switch will be used for the mouse button. It will be placed strategically on our PCB to avoid or minimize modification of the original mouse housing.
https://www.mouser.com/ProductDetail/Omron-Electronics/D2LS-2110M?qs=OcgtsXO%252B3gvFuywVVfHEYw%3D%3D

Optical sensor

A PixArt PMW-3389 or PMW-3360 optical sensor will be used to detect mouse movement. These sensors are commonly used in modern mice. They can be purchased separately, or salvaged from an extremely wide variety of mice.
https://www.tindie.com/products/citizenjoe/pmw3389-motion-sensor/

Bluetooth connectivity/Microcontroller

An ESP32 microcontroller will be used to communicate with the computer over Bluetooth. Additionally, it can process sensor inputs and determine whether the mouse is idle.

Battery/Charging

Our goal is to use a rechargeable lithium ion battery. If space permits, we will use a USB-C connector for charging due to its ubiquity. If this proves to be impractical due to space constraints, we will use a barrel jack, though this is a last resort.

# Criterion For Success

The iMac powers on
The iMac LCD display turns on
The iMac can connect to WiFi
The iMac can function as well as a modern laptop, meaning that it can run multiple applications at once, as well as perform actions within these applications
The iMac ports function
The iMac has Bluetooth connectivity functionality
The mouse can connect to a modern computer with bluetooth
The mouse can provide clicking functions to a modern computer
The mouse can accurately move a cursor on a modern computer
Disregarding the missing USB cable, the mouse must be visually unchanged from the original product
The mouse must last for ??? hours of use (to be determined depending on type of batteries chosen to work with, at least a few hours of charge)

Low Cost Myoelectric Prosthetic Hand

Michael Fatina, Jonathan Pan-Doh, Edward Wu

Low Cost Myoelectric Prosthetic Hand

Featured Project

According to the WHO, 80% of amputees are in developing nations, and less than 3% of that 80% have access to rehabilitative care. In a study by Heidi Witteveen, “the lack of sensory feedback was indicated as one of the major factors of prosthesis abandonment.” A low cost myoelectric prosthetic hand interfaced with a sensory substitution system returns functionality, increases the availability to amputees, and provides users with sensory feedback.

We will work with Aadeel Akhtar to develop a new iteration of his open source, low cost, myoelectric prosthetic hand. The current revision uses eight EMG channels, with sensors placed on the residual limb. A microcontroller communicates with an ADC, runs a classifier to determine the user’s type of grip, and controls motors in the hand achieving desired grips at predetermined velocities.

As requested by Aadeel, the socket and hand will operate independently using separate microcontrollers and interface with each other, providing modularity and customizability. The microcontroller in the socket will interface with the ADC and run the grip classifier, which will be expanded so finger velocities correspond to the amplitude of the user’s muscle activity. The hand microcontroller controls the motors and receives grip and velocity commands. Contact reflexes will be added via pressure sensors in fingertips, adjusting grip strength and velocity. The hand microcontroller will interface with existing sensory substitution systems using the pressure sensors. A PCB with a custom motor controller will fit inside the palm of the hand, and interface with the hand microcontroller.

Project Videos