Lab Notebook

Video, Slides

Keeping a professional record of your design work is a requirement of the course. If maintained properly, lab notebooks serve as an official and legal record of the development of the intellectual property related to your project. It also serves as a way to document and track changes to your design, results of all tests performed, and the effort you have put into your project. A well-kept notebook will simplify writing of all required documentation for this course (design review, final paper, etc) as all of the information in those documents should already exist in your notebook. Finally, keeping a notebook is simply good engineering practice and likely will be required by future employers, so it is a good idea to get in the habit of maintaining one now.

The Book

Any notebook with permanent bindings designed for laboratory record keeping is acceptable. Notebooks should have pre-numbered pages and square grids on their pages. We will not accept normal spiral-bound notebooks, as these are not permissible in court since pages can be easily replaced. While most of you probably won't be taking your design to court, we want to teach you to get into the habit of keeping legally acceptable records. Some of you may decide you do want to patent your project, so it will be very beneficial to have given yourself the legal advantage from the start.

Electronic Notebook

Alternatively, lab notebooks may be kept digitally as Markdown documents in a Git repo on Github or Gitlab, as in the example below. See a complete example of a 445 Git repo here.

notebooks/
├── alex/
│   ├── README.md
│   └── an_image.png
├── pouya/
│   └── README.md
└── nick/
    ├── README.md
    └── another_image.png
	

Notebook entries:

Each complete entry should include:

  1. Date
  2. Brief statement of objectives for that session
  3. Record of what was done

The record will include equations, diagrams, and figures. These should be numbered for reference in the narrative portion of the book. Written entries and equations should appear on the right-hand page of each pair. Drawn figures, diagrams, and photocopies extracted from published sources should be placed on the left-hand side, which is graph-ruled. All separate documents should be permanently attached to the notebook. All hand-written entries must be made in pen.

Overall, the book should contain a record that is clear and complete, so that someone else can follow progress, understand problems, and understand decisions that were made in designing and executing the project.

What to include:

There is always something to record:

Suppose you are only "kicking around" design ideas for the project with someone, or scanning library sources. Your objective is what you're hoping to find. The record shows what you found or what you decided and why, even if it isn't final.

One of the most common errors is to fail to record these seemingly "unimportant" activities. Down the road, they may prove crucial in understanding when and where a particular idea came from.

Submission and Deadlines

Lab notebooks must be submitted at lab checkout on Reading Day. If you are unable to attend lab checkout, please make arrangements with your TA ahead of time.

Microcontroller-based Occupancy Monitoring (MOM)

Vish Gopal Sekar, John Li, Franklin Moy

Microcontroller-based Occupancy Monitoring (MOM)

Featured Project

# Microcontroller-based Occupancy Monitoring (MOM)

Team Members:

- Franklin Moy (fmoy3)

- Vish Gopal Sekar (vg12)

- John Li (johnwl2)

# Problem

With the campus returning to normalcy from the pandemic, most, if not all, students have returned to campus for the school year. This means that more and more students will be going to the libraries to study, which in turn means that the limited space at the libraries will be filled up with the many students who are now back on campus. Even in the semesters during the pandemic, many students have entered libraries such as Grainger to find study space, only to leave 5 minutes later because all of the seats are taken. This is definitely a loss not only to someone's study time, but maybe also their motivation to study at that point in time.

# Solution

We plan on utilizing a fleet of microcontrollers that will scan for nearby Wi-Fi and Bluetooth network signals in different areas of a building. Since students nowadays will be using phones and/or laptops that emit Wi-Fi and Bluetooth signals, scanning for Wi-Fi and Bluetooth signals is a good way to estimate the fullness of a building. Our microcontrollers, which will be deployed in numerous dedicated areas of a building (called sectors), will be able to detect these connections. The microcontrollers will then conduct some light processing to compile the fullness data for its sector. We will then feed this data into an IoT core in the cloud which will process and interpret the data and send it to a web app that will display this information in a user-friendly format.

# Solution Components

## Microcontrollers with Radio Antenna Suite

Each microcontroller will scan for Wi-Fi and Bluetooth packets in its vicinity, then it will compile this data for a set timeframe and send its findings to the IoT Core in the Cloud subsystem. Each microcontroller will be programmed with custom software that will interface with its different radio antennas, compile the data of detected signals, and send this data to the IoT Core in the Cloud subsystem.

The microcontroller that would suit the job would be the ESP32. It can be programmed to run a suite of real-time operating systems, which are perfect for IoT applications such as this one. This enables straightforward software development and easy connectivity with our IoT Core in the Cloud. The ESP32 also comes equipped with a 2.4 GHz Wi-Fi transceiver, which will be used to connect to the IoT Core, and a Bluetooth Low Energy transceiver, which will be part of the radio antenna suite.

Most UIUC Wi-Fi access points are dual-band, meaning that they communicate using both the 2.4 GHz and 5 GHz frequencies. Because of this, we will need to connect a separate dual-band antenna to the ESP32. The simplest solution is to get a USB dual-band Wi-Fi transceiver, such as the TP-Link Nano AC600, and plug it into a USB Type-A breakout board that we will connect to each ESP32's GPIO pins. Our custom software will interface with the USB Wi-Fi transceiver to scan for Wi-Fi activity, while it will use the ESP32's own Bluetooth Low Energy transceiver to scan for Bluetooth activity.

## Battery Backup

It is possible that the power supply to a microcontroller could fail, either due to a faulty power supply or by human interference, such as pulling the plug. To mitigate the effects that this would have on the system, we plan on including a battery backup subsystem to each microcontroller. The battery backup subsystem will be able to not only power the microcontroller when it is unplugged, but it will also be able to charge the battery when it is plugged in.

Most ESP32 development boards, like the Adafruit HUZZAH32, have this subsystem built in. Should we decide to build this subsystem ourselves, we would use the following parts. Most, if not all, ESP32 microcontrollers use 3.3 volts as its operating voltage, so utilizing a 3.7 volt battery (in either an 18650 or LiPo form factor) with a voltage regulator would supply the necessary voltage for the microcontroller to operate. A battery charging circuit consisting of a charge management controller would also be needed to maintain battery safety and health.

## IoT Core in the Cloud

The IoT Core in the Cloud will handle the main processing of the data sent by the microcontrollers. Each microcontroller is connected to the IoT Core, which will likely be hosted on AWS, through the ESP32's included 2.4GHz Wi-Fi transceiver. We will also host on AWS the web app that interfaces with the IoT Core to display the fullness of the different sectors. This web app will initially be very simple and display only the estimated fullness. The web app will likely be built using a Python web framework such as Flask or Django.

# Criterion For Success

- Identify Wi-Fi and Bluetooth packets from a device and distinguish them from packets sent by different devices.

- Be able to estimate the occupancy of a sector within a reasonable margin of error (15%), as well as being able to compute its fullness relative to that sector's size.

- Display sector capacity information on the web app that is accurate within 5 minutes of a user accessing the page.

- Battery backup system keeps the microcontroller powered for at least 3 hours when the wall outlet is unplugged.

Project Videos