Final Presentation

Description

Presentations of the projects are given a few days after the Final Demo to an audience of fellow student reviewers, the lab instructors, and occasionally faculty or even students from outside the class who are following up a project of personal interest to them. The style is formal and professional, and students should dress accordingly (Generally business professional, or what you would wear to a career fair).

Requirements and Grading

Each project team has 25 minutes for a Powerpoint presentation and questions. Every group member must present their own work contributing to the project and be ready to answer questions. Presentations are judged on the basis of presentation technique and of technical organization and content.

Presentation technique includes dress, use of display materials (slides), clarity of speech, absence of filler words/fidgeting, proper eye contact with audience and smooth transitions between speakers. Content is judged on use of a proper introduction, orderly and connected development of ideas, absence of unnecessary details, proper pacing to stay within the allotted time, and an adequate summary at the close of the talk. Quantitative results are expected whenever applicable. Here is a general outline to follow:

  1. Introduction to your team and your project.
  2. Objective. What problem are you solving?
  3. Brief review of original design, statement on areas of design that changed, and overview of each functional block's requirements.
  4. Description of project build and functional test results. You can choose to include a short (30s) video of your project here.
  5. Discussion of successes and challenges, as well as explanations of any failed verifications demonstrating and understanding of the engineering reason behind the failure
  6. Conclusions from the project: what did you learn, what would you do differently if you redesigned your project, etc.
  7. Recommendations for further work.

Any significant, relevant ethical issues should be briefly addressed, preferably in a single slide.

Presentations will be graded using the presentation grading rubric. Your slides should follow ECE or College of Engineering presentation theming.

Submission and Deadlines

Slides for your final presentation must be uploaded to your project page on PACE prior to your presentation time. Deadlines for signing up may be found on the Calendar. Sign-up for the final presentation is done through PACE. Remember to sign up for a peer review of another group.

Electronic Automatic Transmission for Bicycle

Tianqi Liu, Ruijie Qi, Xingkai Zhou

Featured Project

Tianqi Liu(tliu51)

Ruijie Qi(rqi2)

Xingkai Zhou(xzhou40)

Sometimes bikers might not which gear is the optimal one to select. Bicycle changes gears by pulling or releasing a steel cable mechanically. We could potentially automate gear changing by hooking up a servo motor to the gear cable. We could calculate the optimal gear under current condition by using several sensors: two hall effect sensors, one sensing cadence from the paddle and the other one sensing the overall speed from the wheel, we could also use pressure sensors on the paddle to determine how hard the biker is paddling. With these sensors, it would be sufficient enough for use detect different terrains since the biker tend to go slower and pedal slower for uphill or go faster and pedal faster for downhill. With all these information from the sensors, we could definitely find out the optimal gear electronically. We plan to take care of the shifting of rear derailleur, if we have more time we may consider modifying the front as well.

Besides shifting automatically, we plan to add a manual mode to our project as well. With manual mode activated, the rider could override the automatic system and select the gear on its own.

We found out another group did electronic bicycle shifting in Spring 2016, but they didn't have a automatic function and didn't have the sensor set-up like ours. Commercially, both SRAM and SHIMANO have electronic shifting products, but these products integrate the servo motor inside the derailleurs, and they have a price tag over $1000. Only professionals or rich enthusiasts can have a hand on them. As our system could potentially serve as an add-on device to all bicycles with gears, it would be much cheaper.

Project Videos