Pure bending

Take a flexible strip, such as a thin ruler, and apply equal forces with your fingers as shown. Each hand applies a couple or moment (equal and opposite forces a distance apart). The couples of the two hands must be equal and opposite. Between the thumbs, the strip has deformed into a circular arc. For the loading shown here, just as the deformation is uniform, so the internal bending moment is uniform, equal to the moment applied by each hand.
Pure bending

Take a flexible strip, such as a thin ruler, and apply equal forces with your fingers as shown. Each hand applies a couple or moment (equal and opposite forces a distance apart). The couples of the two hands must be equal and opposite. Between the thumbs, the strip has deformed into a circular arc. For the loading shown here, just as the deformation is uniform, so the internal bending moment is uniform, equal to the moment applied by each hand.
Geometry of deformation

We assume that "plane sections remain plane" → All faces of "grid elements" remain at 90° to each other, hence

\[\gamma_{xy} = \gamma_{xz} = 0 \]

Therefore,

\[\tau_{xy} = \tau_{xz} = 0 \]

Shear strain
Shear stress

No external loads on y or z surfaces:

\[\sigma_y = \sigma_z = \tau_{yz} = 0 \]

Thus, at any point of a slender member in pure bending, we have a **state of uniaxial stress**, since \(\sigma_x \) is the only non-zero stress component

For positive moment, \(M > 0 \) (as shown in diagram):

- Segment \(AB \) decreases in length \(\sigma_x < 0 \) and \(\epsilon_x < 0 \)
- Segment \(A'B' \) increases in length \(\sigma_x > 0 \) and \(\epsilon_x > 0 \)

Hence there must exist a surface parallel to the upper and lower where

\[\sigma_x = 0 \text{ and } \epsilon_x = 0 \]

This surface is called **NEUTRAL AXIS**
Geometry of deformation

DE is the **Neutral Axis** \((E_x = 0)\)

\(\varepsilon_x(y)\) - strain field as a function of \(y\)

\(L_{JK} = \) length line JK

\[\varepsilon_x = \frac{\Delta L_{JK}}{L_{JK}_{\text{initial}}} = \frac{L_{JK}_{\text{final}} - L_{JK}_{\text{initial}}}{L_{JK}_{\text{initial}}} \]

\[\varepsilon_x = \frac{(y-\rho)\theta - \rho \theta}{\rho} \]

\[\Rightarrow \quad \varepsilon_x = -\frac{y}{\rho}\]
Constitutive and Force Equilibrium

Constitutive relationship:
\[\varepsilon_x = \frac{-y}{\rho} \]
\[\sigma_x = E\varepsilon_x = -\frac{Ey}{\rho} \]

Force equilibrium:

\[\sum F_x = 0 \]
\[\sum dF = \sum \sigma_x \cdot dA = \int -\frac{E}{\rho} \sigma_y \cdot dA \]

\[\Rightarrow -\frac{E}{\rho} \sum y \cdot dA = 0 \]

\[\Rightarrow \text{N.A. is at the centroid} \ (\bar{y} = 0) \]