Chapter 2: Strain

Chapter Objectives

✓ Understand the concepts of normal and shear strain
✓ Apply the concept to determine the strain for various types of problems

Strain is a measure of geometric deformation.

Critical
become proficient
in symbolic algebra

Key: understand dimensional analysis

\[[\sigma] = \frac{\text{force}}{\text{area}} \Rightarrow \text{stress} \]

\[[\tau] = \frac{\text{force}}{\text{area}} \]

\[[A] = \text{area} \]
A = \frac{\pi}{4} d^2 \quad [d] = \text{length}

\frac{\pi}{4} = 1 \quad [d^2] = \text{area} = \text{length}^2

\sigma = E \cdot \varepsilon

\hat{E} = \text{stress} \quad [\varepsilon] = \text{length}^0 = 1

Dimensions must match on both sides of any equation. \Rightarrow [\sigma] = [E \cdot \varepsilon] = [E] \cdot [\varepsilon]

Question

If a rectangular bar of some metal is heated uniformly, does its shape change?

\Rightarrow \text{presence of normal strain, but no shear strain}

If a ring is held upright and stepped on, will its shape change?

\Rightarrow \text{circular \rightarrow elliptic}

\Rightarrow \text{presence of shear strain (and normal strain)}

\text{due to normal strain}

\text{due to shear strain}

DEFORMATION: change in length or shape of a body when forces are applied (or change in temperature)
DEFORMATION: change in length or shape of a body when forces are applied (or change in temperature)

Rubber membrane subject to tension

Rectangle of one aspect ratio to a rectangle of a different aspect ratio
Extensional strain (normal strain)

Change in length of a member divided by its original length (i.e., deformation per unit length)

\[\varepsilon = \frac{\delta}{L} = \frac{L_{\text{final}} - L_{\text{initial}}}{L_{\text{initial}}} \]

\[[\varepsilon] = 1 \]

Undeformed configuration

Deformed configuration

Uniform strain along member AB

Strain is dimensionless!

Recall point-wise definition of stress:

\[\sigma = \lim_{\Delta A \to 0} \frac{\Delta F}{\Delta A} \]

Similarly, we have a point-wise definition of strain:

\[\varepsilon = \lim_{\Delta x \to 0} \frac{\Delta \delta}{\Delta x} = \frac{d\delta}{dx} \]
True vs Engineering Strain

We just defined "engineering strain", \(\varepsilon = \frac{\Delta L}{L_i} \), where the change in length is divided by the initial length.

"True strain" accounts for change in length of the bar as strain increases:

\[\Delta \varepsilon_1 = \frac{\Delta L_1}{L_0} \]
\[\varepsilon_{\text{true}} = \int_0^{L_f} d\varepsilon \]
\[[d\varepsilon] = 1 \]
\[\frac{d\varepsilon}{L} = 1 \]

\[\Delta \varepsilon_2 = \frac{\Delta L_2}{L_1} \]
\[= \ln \left(\frac{L_f}{L_0} \right) \]
\[= \ln \left(\frac{L_0 + \delta}{L_0} \right) \]

For most practical engineering purposes (or "structural") the true strain is very, very, very small.

For those cases, \(\ln (1 + \varepsilon_{\text{eng.}}) \approx \varepsilon_{\text{eng.}} \).

\(\varepsilon_{\text{true}} \approx \varepsilon_{\text{eng.}} \)

Taylor expansion:

\[\ln(1 + \varepsilon_{\text{eng}}) = \varepsilon_{\text{eng}} - \frac{1}{2} \varepsilon_{\text{eng}}^2 + \frac{1}{3} \varepsilon_{\text{eng}}^3 - \frac{1}{4} \varepsilon_{\text{eng}}^4 + \ldots \]

When \(\varepsilon_{\text{eng}} \ll 1 \), \(\varepsilon_{\text{eng,}}^2, \varepsilon_{\text{eng,}}^3 \), etc. = 0

(1 + \varepsilon_{\text{eng}}) = \varepsilon_{\text{eng}} \) for small \(\varepsilon_{\text{eng}} \)
True vs Engineering Strain

For $L_i = 10^{''}$

<table>
<thead>
<tr>
<th>δ</th>
<th>$\varepsilon_{\text{eng}} = \frac{\delta}{L_i}$</th>
<th>$\varepsilon_{\text{true}} = \ln\left(\frac{L_f}{L_i}\right)$</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01''</td>
<td>0.001</td>
<td>0.00099</td>
<td>0.05%</td>
</tr>
<tr>
<td>0.05''</td>
<td>0.005</td>
<td>0.00498</td>
<td>0.25%</td>
</tr>
<tr>
<td>0.1''</td>
<td>0.01</td>
<td>0.00995</td>
<td>0.5%</td>
</tr>
<tr>
<td>1''</td>
<td>0.1</td>
<td>0.0953</td>
<td>4.9%</td>
</tr>
<tr>
<td>5''</td>
<td>0.5</td>
<td>0.4054</td>
<td>23.3%</td>
</tr>
</tbody>
</table>

Clearly acceptable for TAM251 analysis.

Usually in engineering, 5% error and less is acceptable.
Example

Part of a control linkage of an airplane consists of a rigid member CDB and a flexible cable AB. If a force is applied at the end D of the member and causes a normal strain in the cable of 0.0035 mm/mm, determine the displacement of point D. Originally the cable is unstretched.

Method 1: Trigonometry

\[E_{AB} = 0.0035 = \frac{L_{AB} - L'_{AB}}{L_{AB}} \]
\[L_{AB} = 0.0035 L_{AB} \]
\[L'_{AB} = L_{AB} (1 + 0.0035) = 501.75 \text{ mm} \]

Law of cosines to red triangle

\[(501.75 \text{ mm})^2 = (300 \text{ mm})^2 + (400 \text{ mm})^2 - 2(300 \text{ mm})(400 \text{ mm})\cos (90^\circ + \theta) \]
\[\therefore \theta = \cos^{-1}(\frac{625}{300}) \approx 0.419^\circ \]
\[= 0.0073 \text{ rad} \]

\[s_D^2 = (600 \text{ mm})^2 + (600 \text{ mm})^2 - 2(600 \text{ mm})^2 \cdot \cos(0.0073 \text{ rad}) \]
\[s_D = 4.36 \text{ mm} \]
Part of a control linkage of an airplane consists of a rigid member CDB and a flexible cable AB. If a force is applied at the end D of the member and causes a normal strain in the cable of 0.0035 mm/mm, determine the displacement of point D. Originally the cable is unstretched.

Method 2: Assume rotations are small

\[\delta_x = L \cdot \sin \theta \]
\[\delta_y = L - L \cos \theta \]
For small \(\theta \)
\[\sin \theta \approx \theta \]
\[\cos \theta \approx 1 \]
\[\tan \theta \approx \theta \]
\[\delta_x \approx L \cdot \theta \]
\[\delta_y \approx 0 \]

\[\frac{\delta_{AB}}{L_{AB}} = 0.0035 \]
\[\delta_{AB} = 1.75 \text{ mm} \]

\[\begin{align*}
\delta_B & = \frac{\delta_B}{600 \text{ mm}} = \frac{\delta_B}{300 \text{ mm}} \\
\Rightarrow \delta_D & = 2 \cdot \delta_B
\end{align*} \]

Extension of cable
\[\delta_{AB} = \delta_{B} \cdot \sin \alpha \]
\[\delta_{B} = \frac{\delta_{AB}}{\sin \alpha} \]
\[\delta_D = 2 \cdot \delta_B = \frac{2 \cdot \delta_{AB}}{4/\pi} = \frac{2 \cdot (1.75 \text{ mm})}{0.8} \]
\[\delta_D = 4.375 \text{ mm} \]

Shear Strain
Shear Strain

Axial loads: change in length
Shear loads: change in angle/shape

Shear strain = Change in angle that was originally at 90 degrees \(\left(\frac{\pi}{2} \right) \)

\[\gamma = \tan \gamma = \frac{\delta_y}{L} \approx \gamma \] for small \(\gamma \)

In General

\[\gamma_A = \lambda + \beta = \frac{\delta_y}{L_y} + \frac{\delta_x}{L_x} \]

Example

The rectangular plate is deformed into the shape shown by the dashed lines.

Determine

a) the average normal strain along diagonal BD
b) the average shear strain at corner B

\[\varepsilon_{BD} = \frac{L_{DB} - L_{BD}}{L_{BD}} \]

\[L_{BD} = 500 \text{ mm} \]

\[B' = (403, 2) \text{ mm} \]

\[D' = (2, 302) \text{ mm} \]

\[L_{B'D'} = \sqrt{(403 - 2)^2 + (2 - 302)^2} \text{ mm} \]

\[\varepsilon_{BD} = \frac{500.6 - 500}{500} = 1.6 \times 10^{-3} \]

Ch. 2 - Stress Page 9
\[\gamma_B = \alpha + \beta \]

\[\alpha = \tan^{-1}\left(\frac{2}{403}\right) = 0.0050 \]

\[\beta = \tan^{-1}\left(\frac{2}{302}\right) = 0.0066 \]

\[\therefore \gamma_B = 0.0050 + 0.0066 = 0.0116 \text{ rad} \]

Measurement of Strain

- **Direct measurement:**
 - Initial and final lengths of some section of the specimen are measured, perhaps by some handheld device such as a ruler
 - Axial strain computed directly by following formula:
 \[\epsilon = \frac{\delta}{L} = \frac{L_{\text{final}} - L_{\text{initial}}}{L_{\text{initial}}} \]
 - Accurate measurements of strain in this way may require a fairly large initial length
Measurement of Strain

- **Contact Extensometer:**
 - A clip-on device that can measure very small deformations
 - Two clips attach to a specimen before testing
 - The clips are attached to a transducer body
 \[
 \varepsilon = \frac{\delta}{L} = \frac{L_{\text{final}} - L_{\text{initial}}}{L_{\text{initial}}}
 \]
 - The transducer outputs a voltage
 - Changes in voltage output are converted to strain

Measurement of Strain

- Strain gages
 - Small electrical resistors whose resistance changes with strain
 - Change in resistance can be converted to strain measurement
 - Often sold as “rosettes,” which can measure normal strain in
 two or more directions
 - Can be bonded to test specimen
Measurement of Strain

- **Digital Image Correlation (DIC)**
 - Image placed on surface of test specimen
 - Image may consist of speckles or some regular pattern
 - Deformation of image tracked by digital camera
 - Image analysis used to determine multiple strain components

DIC system analyzing a notch fracture test, from trilin.com

Strain field in a notch fracture test, as measured using DIC. From barslab.lab.mcgill.ca